matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - EigenwerteBestimmung von Eigenwerten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Eigenwerte" - Bestimmung von Eigenwerten
Bestimmung von Eigenwerten < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestimmung von Eigenwerten: Eigenwerte und Eigenvektoren
Status: (Frage) beantwortet Status 
Datum: 18:54 Mi 03.06.2009
Autor: aga88

Aufgabe
a) Man bestimme alle Eigenwerte und Eigenvektoren der Matrix

M= [mm] \pmat{ 1 & 0 & 1 \\ 0 & 2 & 0 \\ -1 & 0 & 3 } \in \IR^{3 x 3} [/mm] und entscheide ob M ähnlich zu einer Diagonalmatrix ist.

b) Gegeben sei die Matrix

A= [mm] \pmat{ 1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1 } \in \IR^{3 x 3} [/mm]
Man bestimme eine Diagonalmatrix D [mm] \in \IR^{3 x 3} [/mm]  und eine invertierbare Matrix P [mm] \in GL_{3}(\IR) [/mm] mit D= P^-1 A P.

Hallo! Ich brauche dringend Hilfe! Bei diesen Aufgaben kann ich immer anfangen und dann hackt es auf einmal an einer Stelle. Bin folgendermaßen vorgegangen:

zu a) habe erst det ( M- [mm] \lambda [/mm] E) = [mm] \vmat{ 1-\lambda & 0 & 1 \\ 0 & 2- \lambda &0 \\ -1 & 0 & 3- \lambda } [/mm]

entsprechend habe ich weiter gerechnet und erhielt für [mm] \lambda= [/mm] 2; 1; 3 raus.
Ab diesem Punkt wusste ich dann nicht weiter.

zu b): bin hier genauso vorgegangen und erhielt für [mm] \lambda [/mm] 1= 1 und [mm] \lambda [/mm] 2 =0 heraus.

Was kann ich nun machen?

LG

        
Bezug
Bestimmung von Eigenwerten: Antwort
Status: (Antwort) fertig Status 
Datum: 19:15 Mi 03.06.2009
Autor: seamus321

Wenn ich mich recht erinnere rechnet man die Eigenvektoren aus indem mann die Eigenwerte in M- [mm] \lambda [/mm] E einsetzt also zum Beispiel
[mm] E(2)=\pmat{ 1- 2 & 0 & 1 \\ 0 & 2- 2 &0 \\ -1 & 0 & 3- 2 } [/mm]
davon rechnest du dann den Kern aus also [mm] E(2)*\pmat{ x_1 \\ x_2\\ x_3 }=0 [/mm] aus wodurch du deine Eigenvektor bzgl E(2) bekommst!

Das ganze machst du dann für jeden Eigenwert und somit bekommst du alle  Eigenvektoren.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]