matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-FinanzmathematikBeta und Standardabweichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Finanzmathematik" - Beta und Standardabweichung
Beta und Standardabweichung < Finanzmathematik < Finanz+Versicherung < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beta und Standardabweichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:58 Sa 13.08.2016
Autor: Mathics

Aufgabe
Ist die folgende Aussage wahr oder falsch?
"Eine Aktie mit gleichem Beta hat auch dieselbe Standardabweichung."

Liebes Forum,

meiner Meinung nach, ist diese Aussage falsch.

Die Standardabweichung gibt das Risiko der Aktie an, falls diese seperat gehalten wird, also die Abweichungen ihrer Renditen von ihrer durchschnittlichen Rendite. Die Standardabweichung misst das Gesamtrisiko einer Aktie.

Das Beta hingegen gibt an, welchen Risikobeitrag die Aktie in einem gut diverisifzierten Portfolio leistet. Das Beta ist somit ein Maß für das Marktrisiko der Aktie.

Nun kann das Gesamtrisiko einer Aktie in einem Portfolio reduziert werden. Denn durch Diversifikation lässt sich das komplette spezifische Risiko der Aktie eliminieren.

Algebraisch setzt sich das Gesamtrisiko zusammen aus:

var(Aktie) = [mm] \beta^{2}* [/mm] var(Markt) + [mm] var(\varepsilon) [/mm]

mit Marktrisiko =  [mm] \beta^{2}* [/mm] var(Markt)
und spezifischem Risiko = [mm] var(\varepsilon) [/mm]

Diese Gleichung impliziert nicht, dass Aktien mit identischem beta auch dieselbe Standardabweichung bzw. Varianz haben. Denn Aktien können dasselbe Marktrisiko haben (und damit gleiches Beta), aber unterschiedliches spezifisches Risiko.

Was würdet ihr sagen? Ist meine Antwort richtig?

Lg
Mathics

        
Bezug
Beta und Standardabweichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:08 Sa 13.08.2016
Autor: rabilein1


> "Eine Aktie mit gleichem Beta hat auch dieselbe Standardabweichung."

> Die Standardabweichung gibt das Risiko der Aktie an, falls
> diese seperat gehalten wird, also die Abweichungen ihrer
> Renditen von ihrer durchschnittlichen Rendite. Die
> Standardabweichung misst das Gesamtrisiko einer Aktie.

Ich weiß gar nicht, ob diese Definition so richtig ist.
Was heißt denn "Rendite einer Aktie"? Soll damit "Kurs-Steigerung dividiert durch Kurs in einem Jahr" gemeint sein?
Kommt eine Standardabweichung dann durch Kursschwankungen zustande?




Bezug
        
Bezug
Beta und Standardabweichung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:54 Sa 13.08.2016
Autor: Staffan

Hallo,

ich habe ein gewisses Verständnisproblem mit der Ausgangsaussage. Soll gesagt werden, das Beta (bzw. der Betafaktor) sei gleich der Standardabweichung der Aktienkurse? Also z.B. bei $ [mm] \beta= [/mm] 1$ auch [mm] $\sigma=1$? [/mm] Ich will das im folgenden annehmen.
Das Beta und die Standardabweichung würde ich etwas anders beschreiben.
Die Standardabweichung, berechnet aus den Mittelwerten der Kursänderungen einer Aktie, stellt deren Volatilität dar, d.h. die Kursschwankungen. Der Betafaktor ist ein Wert, der sich aus dem Vergleich der Volatilität einer Aktie mit der eines Vergleichswerts (z.B. dem DAX) ergibt. Ist etwa [mm] $\beta=1$, [/mm] die Volatilität der Aktie aber größer, bedeutet das wegen der höheren Schwankungen, daß deren Risiko (aber auch Chancen) höher ist als das des Vergleichswerts, liegt die Volatilität darunter, gilt das Gegenteil.
Der Betafaktor wird berechnet aus dem Verhältnis der Kovarianz(cov) der betrachteten Aktie (A) mit dem Vergleichswert (V) zu der Varianz des Vergleichswerts, also

$ [mm] \beta_{A,V}=\bruch{cov_{A,V}}{\sigma^2_{V}}$. [/mm]

Eine andere Herangehensweise folgt aus dem Konzept der linearen Regression. Danach läßt sich der Zusammenhang zwischen den Mittelwerten der Renditen der Aktie [mm] M_A [/mm] und denen des Vergleichswerts [mm] M_V [/mm] durch eine Regressionsgerade beschreiben

$ [mm] M_A=\alpha +\beta \cdot M_V [/mm] $

Das [mm] \beta, [/mm] die Steigung der Geraden, ist wieder der Betafaktor. Und [mm] \alpha [/mm] (Schnittpunkt mit der y-Achse) stellt ggf. eine zusätzliche Rendite dar, die sich ergeben kann, wenn sich der Vergleichswert nicht ändert. Setzt man [mm] $\alpha=0$, [/mm] können sich nur bei [mm] $\beta=1$ [/mm] gleiche Mittelwerte der Renditen (und dann auch der Standardabweichung) ergeben, ansonsten nicht. Das zeigt sich auch bei der zuerst genannten Formel.
Von daher stimme ich Dir zu, daß die Aussage nicht allgemein zutreffend ist.

Gruß
Staffan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]