matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1Betragsungleichung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Real Analysis (Single Variable)" - Betragsungleichung
Betragsungleichung < Real Analysis (Single Variable) < Real Analysis < Uni-Calculus < University < Maths <
View: [ threaded ] | ^ Forum "Analysis des R1"  | ^^ all forums  | ^ Tree of Forums  | materials

Betragsungleichung: Frage (beantwortet)
Status: (Question) answered Status 
Date: 20:13 Mi 13/03/2019
Author: Pacapear

Hallo zusammen!

Ich habe hier eine Bertragsungleichung, bei der ich auf ein nur teilweise richtiges Ergebnis komme, aber ich finde den Fehler leider nicht.

Meine Ungleichung lautet:

$- [mm] \frac{\left| 2-x \right|}{2x+1} [/mm] < 3$

Dann erhalte ich ja vier Fälle:

1) $2-x$ positiv (d.h. $x<2$) und $2x+1$ positiv (d.h. $x>-0,5$)
2) $2-x$ positiv (d.h. $x<2$) und $2x+1$ negativ (d.h. $x<-0,5$)
3) $2-x$ negativ (d.h. $x>2$) und $2x+1$ positiv (d.h. $x>-0,5$)
4) $2-x$ negativ (d.h. $x>2$) und $2x+1$ negativ (d.h. $x<-0,5$)

Für Fall 1) erhalte ich als Lösung der Ungleichung $x>-1$ und damit insgesamt $-0,5<x<2$.

Für Fall 2) erhalte ich als Lösung der Ungleichung $x<-1$ und damit insgesamt $x<-1$.

Für Fall 3) erhalte ich als Lösung der Ungleichung $x<-1$ und damit insgesamt keine Lösung.

Für Fall 4) erhalte ich als Lösung der Ungleichung $x>-1$ und damit insgesamt keine Lösung.

Wenn ich nun die Lösungen von Fall 1) und Fall 2) vereinige, erhalte ich [mm] $\{ -0,5
Rauskommen soll aber [mm] $\{ -0,5
Wo ist mein Fehler?

VG Nadine

        
Bezug
Betragsungleichung: Antwort
Status: (Answer) finished Status 
Date: 20:47 Mi 13/03/2019
Author: chrisno

3) $ 2-x $ negativ (d.h. $ x>2 $) und $ 2x+1 $ positiv (d.h. $ x>-0,5 $)

Für den Fall gilt
$ - [mm] \left| 2-x \right| [/mm] = -(x - 2) = 2 - x $
Damit wird
$ - [mm] \frac{\left| 2-x \right|}{2x+1} [/mm] < 3 $
zu
$ [mm] \frac{2-x }{2x+1} [/mm] < 3 $
weiter
$ 2 - x < 6x + 3 $
$ -1 < 7x $
$ [mm] \br{-1}{7} [/mm] < x$
Da Voraussetzung für diesen Fall x > 2 war, kommen die alle dazu.

Bezug
                
Bezug
Betragsungleichung: Mitteilung
Status: (Statement) No reaction required Status 
Date: 12:36 Sa 16/03/2019
Author: Pacapear

Vielen Dank, damit habe ich meinen Fehler gefunden :-)

Bezug
        
Bezug
Betragsungleichung: Antwort
Status: (Answer) finished Status 
Date: 08:47 Do 14/03/2019
Author: fred97


> Hallo zusammen!
>  
> Ich habe hier eine Bertragsungleichung, bei der ich auf ein
> nur teilweise richtiges Ergebnis komme, aber ich finde den
> Fehler leider nicht.
>  
> Meine Ungleichung lautet:
>  
> [mm]- \frac{\left| 2-x \right|}{2x+1} < 3[/mm]
>  
> Dann erhalte ich ja vier Fälle:
>  
> 1) [mm]2-x[/mm] positiv (d.h. [mm]x<2[/mm]) und [mm]2x+1[/mm] positiv (d.h. [mm]x>-0,5[/mm])
>  2) [mm]2-x[/mm] positiv (d.h. [mm]x<2[/mm]) und [mm]2x+1[/mm] negativ (d.h. [mm]x<-0,5[/mm])
>  3) [mm]2-x[/mm] negativ (d.h. [mm]x>2[/mm]) und [mm]2x+1[/mm] positiv (d.h. [mm]x>-0,5[/mm])
>  4) [mm]2-x[/mm] negativ (d.h. [mm]x>2[/mm]) und [mm]2x+1[/mm] negativ (d.h. [mm]x<-0,5[/mm])
>  
> Für Fall 1) erhalte ich als Lösung der Ungleichung [mm]x>-1[/mm]
> und damit insgesamt [mm]-0,5
>  
> Für Fall 2) erhalte ich als Lösung der Ungleichung [mm]x<-1[/mm]
> und damit insgesamt [mm]x<-1[/mm].
>  
> Für Fall 3) erhalte ich als Lösung der Ungleichung [mm]x<-1[/mm]
> und damit insgesamt keine Lösung.
>  
> Für Fall 4) erhalte ich als Lösung der Ungleichung [mm]x>-1[/mm]
> und damit insgesamt keine Lösung.
>  
> Wenn ich nun die Lösungen von Fall 1) und Fall 2)
> vereinige, erhalte ich [mm]\{ -0,5
>  
> Rauskommen soll aber [mm]$\{ -0,5
>  
> Wo ist mein Fehler?

Wo Dein Fehler ist, hat chrisno Dir schon gesagt.

Ich will Dir zeigen, wie man das einfacher machen kann:

Fall 1: 2x+1 >0, also x>-1/2. Dann ist die linke Seite der Ungleichung negativ, insbesondere also <3. Damit ist die Ungl. für all diese x erfüllt.

Fall 2: 2x+1<0, also x<-1/2. Dann ist 2-x>0. Die Ungl. lautet dann

$- [mm] \frac{2-x}{2x+1}<3$. [/mm]

Multiplizieren wir mit 2x+1 durch, so ergibt das

$-(2-x)>6x+3$, also $-2+x>6x+3$. Das ist gleichbedeutend mit $x<-1.$


>  
> VG Nadine


Bezug
                
Bezug
Betragsungleichung: Mitteilung
Status: (Statement) No reaction required Status 
Date: 12:37 Sa 16/03/2019
Author: Pacapear

Vielen Dank :-)

Bezug
View: [ threaded ] | ^ Forum "Analysis des R1"  | ^^ all forums  | ^ Tree of Forums  | materials


Alle Foren
Status vor 2d 5. mana
FunkAna/Ungleichung
Status vor 2d 3. mana
S8-10/Flächeninhalt
Status vor 2d 3. kloeten
S8-10/Formel umstellen
Status vor 3d 5. Josef
UFina/Kalkulation Entwürfen
Status vor 4d 5. Pacapear
UAnaR1/Betragsungleichung
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]