matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenBew.: Gleichmäßige Konvergenz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Funktionen" - Bew.: Gleichmäßige Konvergenz
Bew.: Gleichmäßige Konvergenz < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bew.: Gleichmäßige Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:24 Fr 21.05.2010
Autor: WiebkeMarie

Aufgabe
Sei X ein metrischer Raum. Seien [mm] (f_n)_{n \in \IN} [/mm] und [mm] (g_n)_{n \in \IN} [/mm] Folgen in C(X) (dies ist der Raum der stetigen, beschränkten Funktionen von X in [mm] \IC). [/mm] Die Folge [mm] (f_n)_{n \in \IN} [/mm] konvergiere gleichmäßig gegen f und die Folge [mm] (g_n)_{n \in \IN} [/mm] konvergiere gleichmäßig gegen g.

Zeigen Sie, dass [mm] (f_n g_n)_{n \in \IN} [/mm] gleichmäßig gegen fg konvergiert.
Hinweis: [mm] \parallel fg-f_n g_n \parallel [/mm] = [mm] \parallel f(g-g_n) [/mm] + [mm] (f-f_n)g_n \parallel [/mm]

Hallo!

Es ist zu zeigen: [mm] \parallel f(g-g_n)+(f-f_n)g_n \parallel \le \epsilon [/mm]

Bin mit dem Hinweis gestartet:

[mm] \parallel f(g-g_n)+(f-f_n)g_n \parallel [/mm]
= [mm] \parallel [/mm] f [mm] \parallel \cdot \parallel g-g_n\parallel [/mm] + [mm] \parallel f-f_n \parallel \cdot \parallel g_n \parallel [/mm]

(Da [mm] (f_n)_{n \in \IN} [/mm] und [mm] (g_n)_{n \in \IN} [/mm] gleichmäßig konvergieren gilt:)

[mm] \le \parallel [/mm] f [mm] \parallel \cdot \epsilon_1 [/mm] + [mm] \epsilon_2 \cdot \parallel g_n \parallel [/mm]

Mein nächster Gedanke war, dass ich f und [mm] f_n [/mm] abschätzen kann, da sie beschränkt sind.
Seien [mm] m_1 [/mm] obere Schranke von [mm] \parallel [/mm] f [mm] \parallel [/mm] und [mm] m_2 [/mm] obere Schranke von [mm] \parallel g_n \parallel. [/mm]

[mm] \le m_1 \cdot \epsilon_1 [/mm] + [mm] m_2 \cdot \epsilon_2 [/mm] := [mm] \epsilon [/mm]

Hier bin ich mir unsicher. Darf ich das Epsilon so definieren? Denn damit würde es ja von [mm] m_1 [/mm] und [mm] m_2 [/mm] abhängen oder?

Vielen Dank schonmal!
Liebe Grüße, WiebkeMarie

        
Bezug
Bew.: Gleichmäßige Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 11:37 Fr 21.05.2010
Autor: statler

Hallo!

> Sei X ein metrischer Raum. Seien [mm](f_n)_{n \in \IN}[/mm] und
> [mm](g_n)_{n \in \IN}[/mm] Folgen in C(X) (dies ist der Raum der
> stetigen, beschränkten Funktionen von X in [mm]\IC).[/mm] Die Folge
> [mm](f_n)_{n \in \IN}[/mm] konvergiere gleichmäßig gegen f und die
> Folge [mm](g_n)_{n \in \IN}[/mm] konvergiere gleichmäßig gegen g.
>  
> Zeigen Sie, dass [mm](f_n g_n)_{n \in \IN}[/mm] gleichmäßig gegen
> fg konvergiert.
> Hinweis: [mm]\parallel fg-f_n g_n \parallel[/mm] = [mm]\parallel f(g-g_n)[/mm]
> + [mm](f-f_n)g_n \parallel[/mm]

> Es ist zu zeigen: [mm]\parallel f(g-g_n)+(f-f_n)g_n \parallel \le \epsilon[/mm]
>  
> Bin mit dem Hinweis gestartet:
>  
> [mm]\parallel f(g-g_n)+(f-f_n)g_n \parallel[/mm]
>  = [mm]\parallel[/mm] f
> [mm]\parallel \cdot \parallel g-g_n\parallel[/mm] + [mm]\parallel f-f_n \parallel \cdot \parallel g_n \parallel[/mm]
>  
> (Da [mm](f_n)_{n \in \IN}[/mm] und [mm](g_n)_{n \in \IN}[/mm] gleichmäßig
> konvergieren gilt:)
>  
> [mm]\le \parallel[/mm] f [mm]\parallel \cdot \epsilon_1[/mm] + [mm]\epsilon_2 \cdot \parallel g_n \parallel[/mm]
>  
> Mein nächster Gedanke war, dass ich f und [mm]f_n[/mm] abschätzen
> kann, da sie beschränkt sind.
>  Seien [mm]m_1[/mm] obere Schranke von [mm]\parallel[/mm] f [mm]\parallel[/mm] und [mm]m_2[/mm]
> obere Schranke von [mm]\parallel g_n \parallel.[/mm]
>  
> [mm]\le m_1 \cdot \epsilon_1[/mm] + [mm]m_2 \cdot \epsilon_2[/mm] :=
> [mm]\epsilon[/mm]
>  
> Hier bin ich mir unsicher. Darf ich das Epsilon so
> definieren? Denn damit würde es ja von [mm]m_1[/mm] und [mm]m_2[/mm]
> abhängen oder?

Das [mm] \varepsilon [/mm] ist vorgegeben, suchen mußt du die beiden [mm] \varepsilon_i. [/mm] Aber dafür kannst du z. B. [mm] \varepsilon_1 [/mm] := [mm] \bruch{\varepsilon}{2m_1} [/mm] (oder kleiner) nehmen.

Noch genauer suchst du zu dem gegebenen [mm] \varepsilon [/mm] ein [mm] n_0 [/mm] so, daß für alle ....

Frohe Pfingsten aus HH-Harburg
Dieter

Bezug
                
Bezug
Bew.: Gleichmäßige Konvergenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:45 Fr 21.05.2010
Autor: WiebkeMarie

Super danke!
Jetzt hab ichs verstanden. Klar gleichmäßige Konvergenz heißt ja es gilt für alle, also kann ich mir auch welche wählen...
Danke!! ;)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]