matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenBeweis: Basis von R(2x2)
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Matrizen" - Beweis: Basis von R(2x2)
Beweis: Basis von R(2x2) < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis: Basis von R(2x2): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:03 Sa 18.09.2010
Autor: lemur

Aufgabe
Zeige, dass die Menge
B =  [mm] \begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 2 & -1 \\ 1 & 0 \end{pmatrix} [/mm] , [mm] \begin{pmatrix} 0 & 1 \\ -1 & 2 \end{pmatrix} [/mm] , [mm] \begin{pmatrix} -1 & 0 \\ 2 & 1 \end{pmatrix} [/mm]
eine Basis von  [mm] \IR^{2x2}\ [/mm] ist.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Dabei gilt es zu beweisen, dass die Matrizen sowohl linear unabhängig als auch Erzeugendensystem sind.

Die lineare unabghängigkeit habe ich so bewiesen:

[mm] a\begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix}, b\begin{pmatrix} 2 & -1 \\ 1 & 0 \end{pmatrix} [/mm] , [mm] c\begin{pmatrix} 0 & 1 \\ -1 & 2 \end{pmatrix} [/mm] , [mm] d\begin{pmatrix} -1 & 0 \\ 2 & 1 \end{pmatrix} [/mm] = 0

gilt eben nur, wenn a=b=c=d = 0 ist.

Dafür habe ich die Matrizen in eine Vektorform gebracht

[mm] \begin{pmatrix} a+2b-d \\ 2a-b+c \\ b-c+2d \\ -a + 2c + d \end{pmatrix} [/mm]  

nach 0 aufgelöst und herausgefunden, dass dies eben nur gilt wenn a=b=c=d = 0 ist. Also sind die Matrizen lin. unabhängig.

Weitergehend gilt es dann noch zu beweisen, dass sie Erzeugendensystem sind.

Allerdings weiß ich da nicht so genau wie ich ansetzen soll, ich hab mir schon überlegt, dass dabei ja jeder beliebige 4-Tupel erzeugt werden kann, also müsste auch gelten:


[mm] \begin{pmatrix} a+2b-d \\ 2a-b+c \\ b-c+2d \\ -a + 2c + d \end{pmatrix} [/mm]   = [mm] \begin{pmatrix} x1 \\ x2 \\ x3 \\ x4 \end{pmatrix} [/mm]  

Wenn ich das dann aber auflöse komm ich auf Ergebnisse von denen ich nicht weiß wie ich sie verwerten soll.

(z.B 8d = x2 + 3x3 + x4)

Wär nett wenn mir jemand sagen könnte wie ich denn beweise, dass es ein Erzeugendensystem ist.

Viele Grüße und danke schonmal

        
Bezug
Beweis: Basis von R(2x2): Antwort
Status: (Antwort) fertig Status 
Datum: 14:27 Sa 18.09.2010
Autor: XPatrickX

Hallo,

> Zeige, dass die Menge
>  B =  [mm]\begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 2 & -1 \\ 1 & 0 \end{pmatrix}[/mm]
> , [mm]\begin{pmatrix} 0 & 1 \\ -1 & 2 \end{pmatrix}[/mm] , [mm]\begin{pmatrix} -1 & 0 \\ 2 & 1 \end{pmatrix}[/mm]
> eine Basis von  [mm]\IR^{2x2}\[/mm] ist.
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Dabei gilt es zu beweisen, dass die Matrizen sowohl linear
> unabhängig als auch Erzeugendensystem sind.
>
> Die lineare unabghängigkeit habe ich so bewiesen:
>  
> [mm]a\begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix}, b\begin{pmatrix} 2 & -1 \\ 1 & 0 \end{pmatrix}[/mm]
> , [mm]c\begin{pmatrix} 0 & 1 \\ -1 & 2 \end{pmatrix}[/mm] , [mm]d\begin{pmatrix} -1 & 0 \\ 2 & 1 \end{pmatrix}[/mm] = 0
>  

Statt den Kommas, sollen das sicherlich Plus-Zeichen sein.

> gilt eben nur, wenn a=b=c=d = 0 ist.
>  
> Dafür habe ich die Matrizen in eine Vektorform gebracht
>
> [mm]\begin{pmatrix} a+2b-d \\ 2a-b+c \\ b-c+2d \\ -a + 2c + d \end{pmatrix}[/mm]
>  
>
> nach 0 aufgelöst und herausgefunden, dass dies eben nur
> gilt wenn a=b=c=d = 0 ist. Also sind die Matrizen lin.
> unabhängig.
>

Ok, das Prinzip ist auf jeden Fall korrekt.
Da du keine Rechnung gepostet hast, kann ich diese auch nicht kontrollieren.

> Weitergehend gilt es dann noch zu beweisen, dass sie
> Erzeugendensystem sind.
>  
> Allerdings weiß ich da nicht so genau wie ich ansetzen
> soll, ich hab mir schon überlegt, dass dabei ja jeder
> beliebige 4-Tupel erzeugt werden kann, also müsste auch
> gelten:
>  
>
> [mm]\begin{pmatrix} a+2b-d \\ 2a-b+c \\ b-c+2d \\ -a + 2c + d \end{pmatrix}[/mm]
>   = [mm]\begin{pmatrix} x1 \\ x2 \\ x3 \\ x4 \end{pmatrix}[/mm]  

Ja, du musst nachweisen, dass du jede beliebige Matrix [mm] \pmat{ x_1 & x_2 \\ x_3 & x_4 } [/mm] durch linearkombiantion deiner 4 Matrizen darstellen kannst. Der Ansatz ist also korrekt.

>
> Wenn ich das dann aber auflöse komm ich auf Ergebnisse von
> denen ich nicht weiß wie ich sie verwerten soll.
>
> (z.B 8d = x2 + 3x3 + x4)
>  

Na, du musst hier nach a,b,c und d auflösen. Denn dann weißt du für beliebige Einträge [mm] x_1-x_4 [/mm] die Werte der Skalare a-d für die Darstellung durch Linearkombination.

Gruß Patrick

> Wär nett wenn mir jemand sagen könnte wie ich denn
> beweise, dass es ein Erzeugendensystem ist.
>  
> Viele Grüße und danke schonmal


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]