matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesBeweis Ebene parallele Geraden
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra Sonstiges" - Beweis Ebene parallele Geraden
Beweis Ebene parallele Geraden < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis Ebene parallele Geraden: Tipp
Status: (Frage) beantwortet Status 
Datum: 15:33 Di 24.06.2008
Autor: Casandra

Aufgabe
Zeigen Sie, dass im [mm] \IR³ [/mm] eine zu einer Ebene parallele Gerade in der Ebene liegt der mit ihr einen leeren Durchschnitt hat.  

Das bedeutet ja, dass g [mm] \in [/mm] E oder g [mm] \cap [/mm] E = [mm] \emptyset. [/mm]

Ich denke, dass ich dies indirekt beweisen muss.
Ich weiß ja das der Normalenvektor der Ebene und der Richtungsvektor der Geraden senkrecht zu einander sind, wenn ich als Voraussetzung g [mm] \parallel [/mm] E wähle.  Und sie sind dann ja echt parallel, wenn g [mm] \not\in [/mm]  E.

E: [mm] \overrightarrow{x}= \overrightarrow{p} [/mm] + r * [mm] \overrightarrow{a} [/mm] + s* [mm] \overrightarrow{b} [/mm] und g: [mm] \overrightarrow{x}= \overrightarrow{q} [/mm] + t * [mm] \overrightarrow{u}. [/mm]

Und [mm] \overrightarrow{u} [/mm] lässt sich als Linearkombination von [mm] \overrightarrow{a} \overrightarrow{b} [/mm] darstellen:
[mm] \overrightarrow{u} =r_{1} [/mm] * [mm] \overrightarrow{a} [/mm] + [mm] s_{1} [/mm]  * [mm] \overrightarrow{b} [/mm]

Annahme: g [mm] \in [/mm] E:
[mm] \overrightarrow{q} [/mm] + t * [mm] \overrightarrow{u} [/mm] = [mm] \overrightarrow{p} [/mm] + r * [mm] \overrightarrow{a} [/mm] + s* [mm] \overrightarrow{b} [/mm]
dann erhalte ich
[mm] \overrightarrow{q} [/mm]  = [mm] \overrightarrow{p} [/mm] + r * [mm] \overrightarrow{a} [/mm] + s* [mm] \overrightarrow{b} [/mm] - t * [mm] \overrightarrow{u} [/mm]

[mm] \Rightarrow \overrightarrow{q} [/mm]  = [mm] \overrightarrow{p} [/mm] + r * [mm] \overrightarrow{a} [/mm] + s* [mm] \overrightarrow{b} [/mm] - t * [mm] r_{1} *\overrightarrow{a} [/mm] - t * [mm] s_{1} *\overrightarrow{b} [/mm]

[mm] \Rightarrow \overrightarrow{q} [/mm]  = [mm] \overrightarrow{p} [/mm] + (r - t * [mm] r_{1}) [/mm] * [mm] \overrightarrow{a} [/mm] + (s - t * [mm] s_{1}) *\overrightarrow{b} [/mm]

dann kann ich Q in die Geradengleichung von g einsetzen
und erhalte

[mm] \overrightarrow{x} [/mm] = [mm] \overrightarrow{p} [/mm] + (r - t * [mm] r_{1}) [/mm] * [mm] \overrightarrow{a} [/mm] + (s - t  *  [mm] s_{1}) *\overrightarrow{b} [/mm] + t [mm] \overrightarrow{u} [/mm]

[mm] \Rightarrow \overrightarrow{x} [/mm] = [mm] \overrightarrow{p} [/mm] + (r - t * [mm] r_{1}) [/mm] * [mm] \overrightarrow{a} [/mm] + (s - t  *  [mm] s_{1}) *\overrightarrow{b} [/mm] + t [mm] (r_{1} [/mm] * [mm] \overrightarrow{a} [/mm] + [mm] s_{1} [/mm]  * [mm] \overrightarrow{b}) [/mm]

[mm] \Rightarrow \overrightarrow{x} [/mm] = [mm] \overrightarrow{p} [/mm] + r * [mm] \overrightarrow{a} [/mm] + s * [mm] \overrightarrow{b} [/mm]

Dann liegt ja g in E. Kann man dies denn überhaupt so zeigen? Oder ist das vollkommener Blödsinn?
WEiß dann nicht weiter wie ich das andere zeigen kann.
Wäre nett wenn mir einer nen TIpp geben könnte.


Liebe Grüße Casandra


        
Bezug
Beweis Ebene parallele Geraden: Antwort
Status: (Antwort) fertig Status 
Datum: 16:48 Di 24.06.2008
Autor: djmatey

Hallo,

also ehrlich gesagt frage ich mich nach dem Sinn dieser Aufgabe.
Wenn die Gerade nicht in der Ebene liegt, bedeutet "parallel" doch gerade, dass die Gerade die Ebene nicht schneidet.
Was gibt's da noch zu zeigen?
Oder habt Ihr den Begriff "parallel" in besonderer Weise definiert?

LG djmatey

Bezug
                
Bezug
Beweis Ebene parallele Geraden: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:00 Mi 25.06.2008
Autor: Casandra

Danke für deine Antwort!

Zur Parallelität haben wir folgendes:
Die Gerade g und die Ebene e heißen genau dann parallel, wenn sich der Richtungsvektor von g als Liniearkombination der Richtungsvektoren von e darstellen lässt.
Und wenn sie echt parallel sind, dass sie keinen Schnittpunkt haben.
Mehr haben wir nicht zur Parallelität von einer GEraden und einer Ebene.

Deswegen habe ich das so wie oben versucht.

Liebe Grüße

Bezug
                        
Bezug
Beweis Ebene parallele Geraden: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:59 Mi 25.06.2008
Autor: djmatey


> Danke für deine Antwort!
>  
> Zur Parallelität haben wir folgendes:
>  Die Gerade g und die Ebene e heißen genau dann parallel,
> wenn sich der Richtungsvektor von g als Liniearkombination
> der Richtungsvektoren von e darstellen lässt.

genau, und dabei kann die Gerade noch in der Ebene liegen. Also liegt sie entweder in der Ebene oder:

> Und wenn sie echt parallel sind, dass sie keinen
> Schnittpunkt haben.

und das heißt doch gerade, dass g [mm] \cap [/mm] E = [mm] \emptyset [/mm]

> Mehr haben wir nicht zur Parallelität von einer GEraden und
> einer Ebene.
>
> Deswegen habe ich das so wie oben versucht.
>
> Liebe Grüße


LG djmatey


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]