matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-InduktionBeweis Multinomialformel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis-Induktion" - Beweis Multinomialformel
Beweis Multinomialformel < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis Multinomialformel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:27 Fr 25.09.2009
Autor: qsxqsx

Hallo,

Ich habe bis jetzt immer ein bisschen bei einer Mathematik aufgabe verstanden...bei der folgenden kapier ich gar nichts mehr! Ich wäre sehr froh für eine Erklärung...


Für einen sogenannten Multiindex [mm] \alpha=(\alpha(1),...,\alpha(n)) \in \IN^{m}, [/mm] wobei m [mm] \ge [/mm] 2, erklärt man die Länge [mm] |\alpha| [/mm] durch [mm] |\alpha|:=\summe_{j=1}^{m}\alpha(j) [/mm] und setzt [mm] \alpha!:=\produkt_{j=1}^{m}\alpha(j)!. [/mm]

Beweisen Sie die Multinomialformel: Für alle x(1),...,x(m) [mm] \in \IR [/mm] ist.

[mm] (\summe_{j}^{m} x(j))^{k} [/mm] = [mm] \summe_{|\alpha| = k}^{} \bruch{k!}{\alpha!} \produkt_{j=1}^{m} (x(j))^{\alpha(j)}, [/mm] k [mm] \in \IN, [/mm]

wobei [mm] \summe_{|\alpha| = k}^{} [/mm] die Summe über alle Multiindizes der Länge k bezeichnet.

BOA!!! Soll das mal einer verstehen...?
Ich weiss was ein mal ein plus ein summenzeichen und das alles ist, nur versteh ich trotzdem nichts.

DANKE!

Christian

        
Bezug
Beweis Multinomialformel: Antwort
Status: (Antwort) fertig Status 
Datum: 04:20 Fr 25.09.2009
Autor: Fulla

Hallo qsxqsx,

ja, das sieht erstmal sehr wüst aus.... aber so dramatisch ist es gar nicht.
Schau dir mal []diesen Beweis an: Das ist genau deine Aufgabe, allerdings nennen die $a$, was bei dir $x$ heißt.

Den Induktionsanfang ($m=2$) solltest du hinkriegen. Das ist im Prinzip der []binomische Lehrsatz.

Beim Induktionsschritt werden zunächst zwei Sachen definiert: [mm] $\alpha ':=(\alpha_2,\ldots ,\alpha_{m+1})$ [/mm] und [mm] $b:=\sum_{j=2}^{m+1}x_j^{\alpha _j}$ [/mm] - hier wird einfach das [mm] $\alpha_1$ [/mm] "weggeschnitten".

Außerdem wird bewiesen, dass [mm] $\frac{k!}{\alpha!}={k\choose \alpha_1} \frac{(k-\alpha_1)!}{\alpha'!}$ [/mm] (Das ist ganz leicht - schreibe den Binomialkoeffizienten aus, dann steht es schon da...)

Jetzt zum eigentlichen Beweis (auf Seite 72 des Links von oben in der Mitte):
Zeile 1: das letzte "=" ergibt sich aus dem Induktionsanfang ($m=2$).
Zeile 2: hier wird die Induktionsvoraussetzung angewendet mit [mm] $k\to k-\alpha_1$, $\alpha\to \alpha'$. [/mm]
Zeile 3: da in der zweiten Summe nicht über [mm] $\alpha_1$ [/mm] summiert wird, kann man das [mm] ${k\choose \alpha_1}x_1^{\alpha_1}$ [/mm] reinziehen.
Zeile 4: [mm] $\sum_{|\alpha'|=k-\alpha_1^}$ [/mm] lässt sich auch schreiben als [mm] $\sum_{{\alpha_2,\ldots ,\alpha_{m+1}=0}\atop {\alpha_2+\ldots +\alpha_{m+1}=k-\alpha_1}}^{k-\alpha_1}$. [/mm] Es wird also über alle [mm] $\alpha_i$ [/mm] ($i=2\ ...\ m+1$) von 0 bis [mm] $k-\alpha_1$ [/mm] summiert, wobei die Summe [mm] $|\alpha'|=\alpha_2+\ldots +\alpha_{m+1}$ [/mm] gleich [mm] $k-\alpha_1$ [/mm] ist. Nun wird aber diese Summe wiederum über [mm] $\alpha_1$ [/mm] von 0 bis $k$ summiert... Beide Summen zusammen ergeben dann [mm] $\sum_{|\alpha|=k}\ldots$. [/mm]

Der letzte Schritt ist sicherlich der schwierigste (und nicht ganz leicht zu vertsehen). Geh den Beweis ein paar Mal durch, dann wird das schon... Ansonsten frag hier einfach nochmal nach.


Lieben Gruß,
Fulla

Bezug
                
Bezug
Beweis Multinomialformel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:04 Fr 25.09.2009
Autor: qsxqsx

Hallo! Danke vielmals für den Aufwand!

...du hast mir genau das erklärt was ich eigentlich nicht verstanden habe. Trotzdem habe ich noch eine Frage zu "Zeile 4". Ich glaube du hast das sehr gut erklärt, ich kapiers trotzdem noch nicht ganz, dieses Summenzeichen [mm] \summe_{|\alpha| = k}^{}, [/mm] wie wird hier aufsummiert? Und wieso hat das keine obere Grenze?

Gruss Christian

Bezug
                        
Bezug
Beweis Multinomialformel: Antwort
Status: (Antwort) fertig Status 
Datum: 08:49 Sa 26.09.2009
Autor: Gonozal_IX

Hiho,

das Summenzeichen hat eine "obere Schranke", halt nur keine offensichtliche ;-)

> [mm]\summe_{|\alpha| = k}^{},[/mm] wie wird hier aufsummiert?

Du summierst hier über alle [mm] \alpha, [/mm] für die gilt [mm] $|\alpha| [/mm] = k$.
Nun schaust du mal, wie [mm] $|\alpha|$ [/mm] definiert ist, und alles ist schick.
Überlege dir mal, wie die [mm] $\alpha$ [/mm] aussehen, für die gilt [mm] $|\alpha| [/mm] = 2$, beachte dabei, dass [mm] $\alpha \in \IN^m$ [/mm] ist!

MFG,
Gono.

Bezug
                                
Bezug
Beweis Multinomialformel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:40 So 27.09.2009
Autor: qsxqsx

Ich habe es jetzt so halb nach zehn mal durchlesen und drüber schlafen kapiert. Danke. Eins ist mir aber immer noch unklar, was heisst "über alle [mm] \alpha [/mm] für die gilt | [mm] \alpha| [/mm] = k summieren" ? alle [mm] \alpha [/mm] zusammengezählt die k ergeben, für die wird aufsummiert? ...alle möglichkeiten von [mm] \alpha [/mm] für die die Summe = k ist? Und wo ist jetzt die obere Grenze?

Es ist eine Zumutung eine solche aufgabe einem Ingenieur zu stellen...wir sind schliesslich keine Mathematik Studenten...

Gruss Christian

Bezug
                                        
Bezug
Beweis Multinomialformel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:47 So 27.09.2009
Autor: qsxqsx

ich habe auch noch eine Seite gefunden, die mir etwas geholfen hat: http://www.mathematik.de/ger/fragenantworten/erstehilfe/binomischeformeln/multinomialbeweis.html

nur kapier ich halt noch nicht wie bei dem komischen Summenzeichen aufsummiert wird...

Bezug
                                        
Bezug
Beweis Multinomialformel: Antwort
Status: (Antwort) fertig Status 
Datum: 09:48 Mo 28.09.2009
Autor: Gonozal_IX

Huhu,

eine wirkliche "obere Grenze" wirst du natürlich nicht finden, weil sich die [mm] $\alpha$'s [/mm] schlichtweg nicht sinnvoll ordnen lassen.

Aber machen wir doch mal ein Beispiel, setzen $m=3$ und daher gilt [mm] $\alpha \in \IN^3$, [/mm] d.h. [mm] $\alpha [/mm] = [mm] (\alpha_1,\alpha_2,\alpha_3)$. [/mm]

Soo, nun schauen wir uns mal aus Spaß folgende Summe an:

[mm] $\summe_{|\alpha|=2}\alpha!$ [/mm]

Wir summieren also alle [mm] $\alpha!$ [/mm] für die gilt [mm] $|\alpha| [/mm] = 2$.

Dazu schauen wir uns also erstmal alle [mm] \alpha's [/mm] an, für die das gilt.

Man erkennt leicht, dass das die Tupel $(0,0,2),(0,1,1),(1,1,0),(1,0,1),(0,2,0),(2,0,0)$ erfüllen.

Nun berechne doch mal die Summe :-)

MFG,
Gono.

Bezug
                                                
Bezug
Beweis Multinomialformel: Richtig?
Status: (Frage) beantwortet Status 
Datum: 23:42 Mo 28.09.2009
Autor: qsxqsx

Hiha,

Super, ein Beispiel!

[mm] \summe_{|\alpha|=2}^{} \alpha [/mm] ! für m = 3
=
(0 + 0 + 2)! + (0 + 1 + 1)! + (0 + 2 + 0)! + (2 + 0 + 0)! + ...

so richtig?


Schönen Tag, Gruss Christian

Bezug
                                                        
Bezug
Beweis Multinomialformel: Antwort
Status: (Antwort) fertig Status 
Datum: 10:22 Di 29.09.2009
Autor: Gonozal_IX

Nein, schau dir mal an, wie die Fakultät definiert ist von einem Tupel [mm] \alpha. [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]