matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisBeweis Singularitäten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Komplexe Analysis" - Beweis Singularitäten
Beweis Singularitäten < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis Singularitäten: Frage
Status: (Frage) beantwortet Status 
Datum: 17:39 Di 14.06.2005
Autor: Oliilli

Hallo!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Meine Aufgabe ist:
Es sei  [mm] z_{0} [/mm] wesentliche Singularität von f. Man zeige  [mm] \limes_{r\rightarrow0}r^{k}M(r)=+\infty [/mm]    für alle k [mm] \in \IN. [/mm]
Dabei ist M(r)=sup{ [mm] |f(z)|:|z-z_{0}|=r [/mm] } gesetzt.

Was muss man hier machen??
Ich hab keine Ahnung, hat vielleicht jemand eine Hilfestellung für mich??
Danke!
Gruß, Oli

        
Bezug
Beweis Singularitäten: Antwort
Status: (Antwort) fertig Status 
Datum: 17:36 Mi 15.06.2005
Autor: Julius

Hallo!

Ich versuche es mal, aber ich bin echt nicht mehr so drinnen in dem Stoff.

Nehmen wir einmal an, es gäbe ein $k [mm] \in \IN$ [/mm] und eine Konstante $C>0$ mit

[mm] $\lim\limits_{r \to 0}r^kM(r) \le [/mm] C$.

Dann wäre doch [mm] $(z-z_0)^k [/mm] f(z)$ in einer punktierten Umgebung von [mm] $z_0$ [/mm] beschränkt, also nach dem Riemannschen Hebbarkeitssatz durch eine holomorphe Funktion in den Punkt [mm] $z_0$ [/mm] fortsetzbar. insbesondere wäre [mm] $z_0$ [/mm] eine hebbare Singularität oder ein Pol, Widerspruch.

So ähnlich sollte es gehen, denke ich... :-)

Viele Grüße
Julius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]