matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenBeweis bei Körpern
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Abbildungen" - Beweis bei Körpern
Beweis bei Körpern < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis bei Körpern: Lösungsansatz
Status: (Frage) beantwortet Status 
Datum: 14:20 Do 18.11.2010
Autor: FIN10

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Aufgabe
Es sei $K$ ein Körper, $0$ die Null und $1$ die Eins von $K$.
Im Allgemeinen ist die Menge $\IN=\{0,1,2,\ldots\}$ nicht in $K$ enthalten! Es wird zu jedem $n \in \IN$ für jedes $a \in K$ das natürliche Vielfache $n \times a$, das $n$-fache von $a$, definiert:

$n\times a=\begin{cases} 0 & \mbox{für } n=0 \\ ((n-1) \times a) + a  & \mbox{für } n=1,2,3,\ldots}\end{cases}$


Beweisen Sie:
a) Ist $a \in K$ und $n \in \IN$, so ist $-(n \times a) = n \times (-a)$.
b) Sind $a,b \in K$ und $n \in \IN$, so ist $n \times (a+b) = ( n \times a ) + ( n \times b)$.



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Für mich sind die Schlussfolgerungen logisch, doch ich weiß nicht, wie ich sie beweisen soll!
Kann mir vielleicht jmd helfen?

Vielen Dank im Voraus!

        
Bezug
Beweis bei Körpern: Antwort
Status: (Antwort) fertig Status 
Datum: 18:12 Do 18.11.2010
Autor: piet.t

Hallo,

> Für mich sind die Schlussfolgerungen logisch, doch ich
> weiß nicht, wie ich sie beweisen soll!
> Kann mir vielleicht jmd helfen?

Also für mich sind sie auf den ersten Blick noch nicht unbedingt logisch - beachte vor allem, dass [mm]n[/mm] ja gar nicht im Körper liegt....

Nachdem man hier ja irgend etwas für alle [mm]n \in \IN[/mm] zeigen soll ist es schon mal naheliegend, hier mit vollständiger Induktion zu arbeiten. Versuch es doch einmal damit.
Zu Aufgabe a) würde ich vorschlagen, dass Du zeigst, dass [mm]-(n\times a) + (n \times (-a)) = 0 \quad \forall n \in \IN[/mm].

Die b) geht per Induktion eigentlich ganz gerade durch.


Du kannst ja gerne Deine Ansätze hier nochmal posten.

Gruß

piet

Bezug
                
Bezug
Beweis bei Körpern: Lösungsvorschlag
Status: (Frage) beantwortet Status 
Datum: 18:50 Do 18.11.2010
Autor: FIN10

Für die Aufgabe hätteich jetzt folgende Überlegungen:

a)        -(n x a) =n x (-a)
     =>  -(n x a) - (n x (-a)) = 0
     =>  lt. Definition
     =>  0 x a - 0 x a = 0
     =>  0 = 0

b)        n x (a+b) = (n x a) + (n x b)

            für n = 1
     =>  1 x (a+b) = (1 x a) + (1 x b)
     => a + b = a + b

             für n = k+1
     => (k+1) x (a+b) = ((k+1) x a) + ((k+1) x b)
     => (k x a + a)+(k x b + b) = (k x a + a) +(k x b + b)

Wäre das so ungefähr richtig?

Bezug
                        
Bezug
Beweis bei Körpern: Antwort
Status: (Antwort) fertig Status 
Datum: 19:22 Do 18.11.2010
Autor: leduart

Hallo
du benutzt die Def von n*a ja nirgends (oder ich seh es nicht!)
a) Beh -7=7
-7-7=0
lt. def
0*(-7)+0*(-7)=0
0=0
bei b) wo hast du die ind. Vors benutzt?
ich seh zumindest keine Induktion.
Gruss leduart


Bezug
                                
Bezug
Beweis bei Körpern: Nachfrage
Status: (Frage) beantwortet Status 
Datum: 19:54 Do 18.11.2010
Autor: FIN10

stimmt, bei a hab ich es vergessen mit hinzuschreiben. Das war eine Zwischenzeile, die ich vergessen habe.

Bei b habe ich mir extra ein Buch zur Hand genommen und versucht danach die Induktion durchzuführen, aber so ganz sehe ich da eben nicht durch. Es geht ja darum, zu zeigen, dass die Gleichung für alle n gilt. Daum habe ich erst 1 eingesetzt und dann k+1. So war es in dem Beispiel im Buch beschrieben. Also habe ich es wohl noch nicht recht verstanden. Wie müsste ich denn demnach richtigerweise vorgehen?

Bezug
                                        
Bezug
Beweis bei Körpern: Antwort
Status: (Antwort) fertig Status 
Datum: 20:30 Do 18.11.2010
Autor: piet.t

Hallo,

bleiben wir erst mal bei b), wenn Du da sauber durch bist klappt vielleicht auch a) besser.

> Bei b habe ich mir extra ein Buch zur Hand genommen und
> versucht danach die Induktion durchzuführen, aber so ganz
> sehe ich da eben nicht durch. Es geht ja darum, zu zeigen,
> dass die Gleichung für alle n gilt.

Korrekt.
> Daum habe ich erst 1 eingesetzt
Wenn ich mir die Aufgabenstellung durchlese soll die 0 aber auch zu den natürlichen Zahlen gehören - also fange besser mit 0 an und zeige, dass die Behauptung für n=0 richtig ist (-> Induktionsanfang).

> und dann k+1. So war es in dem Beispiel im Buch
> beschrieben. Also habe ich es wohl noch nicht recht
> verstanden. Wie müsste ich denn demnach richtigerweise
> vorgehen?

Wenn wir jetzt voraussetzen, dass die Behauptung für n=k gilt (Induktionsannahme), dann musst Du nur noch zeigen, dass sie dann auch für n=k+1 gilt (Induktionsschluss) und schon ist die Behauptung für alle n gezeigt: Für 0 ist sie richtig, dann gilt sie auch für 0+1=1 und dann auch für 1+1=2 usw.

> für n = k+1
> => (k+1) x (a+b) = ((k+1) x a) + ((k+1) x b)
> => (k x a + a)+(k x b + b) = (k x a + a) +(k x b + b)

Die Umformung auf der rechten Seite verstehe ich, denn das ist ja gerade die Definition von [mm] $(k+1)\times [/mm] a$. Aber auf der linken Seite sehe ich noch nicht, warum [mm] $(k+1)\times [/mm] (a+b) = (k [mm] \times [/mm] a + a) + (k [mm] \times [/mm] b + b)$ sein soll. Versuche diese Gleichheit einmal durch mehrere einfache Umformungen zu zeigen, wobei Du bei jedem Schritt angibst, welche Regel oder Definition du gerade benutzt. Dabei darfst Du die Definition von [mm] $n\times [/mm] a$ und die Körperaxiome (edit: und natürlich die Induktionsannahme [mm] $k\times [/mm] (a+b) = [mm] k\times [/mm] a + [mm] k\times [/mm] b$) verwenden. Beachte aber, dass für [mm] $\times$ [/mm] kein Distributivgesetzverwenden darst, denn [mm] $\times$ [/mm] ist ja nicht die Multiplikation in K sondern irgenwas anderes.

Gruß

piet


Bezug
                                                
Bezug
Beweis bei Körpern: Weiterführung
Status: (Frage) beantwortet Status 
Datum: 20:47 Do 18.11.2010
Autor: FIN10

Also ich habe jetzt für n = 0

0 x (a+b) = ( 0 x a) + ( 0 x b)
( 0 x a) + ( 0 x b) = ( 0 x a) + ( 0 x b) [mm] \Rightarrow [/mm] laut Definition
0 + 0 = 0 + 0
0=0

für n = 1 wie gehabt
und für n= k+1:

(k + 1) x (a + b) = (( k + 1) x a) + ((k + 1) x b)
((k x a)+ (1 x a)) + ((k x b) + (1 x b))= ((k x a)+ (1 x a)) + ((k x b) + (1 x b))

und daran sehe ich doch, dass es gleich ist. Nur weiß ich immer nicht, welches Gesetz ich gerade verwende oder verwenden soll!


Bezug
                                                        
Bezug
Beweis bei Körpern: Antwort
Status: (Antwort) fertig Status 
Datum: 10:37 Fr 19.11.2010
Autor: leduart

Hallo
du verwendest einfach das Distributivgesetz für das [mm] \times, [/mm] das du ja gerade beweisen willst.
Verwenden darfst du:
[mm] f(n)=\begin{cases} 0 x a := 0 \\ n x a := ((n-1)x a) + a & \mbox{für n=1,2,3,...}\end{cases} [/mm]
und weiter nichts.

> Also ich habe jetzt für n = 0
>  
> 0 x (a+b) = ( 0 x a) + ( 0 x b)

jetzt einfach nicht Distributivges. sondern nach Def ist 0 x (a+b)=0 und die 2 Terme rechts auch.
also einfach 0=0+0

>  ( 0 x a) + ( 0 x b) = ( 0 x a) + ( 0 x b) [mm]\Rightarrow[/mm] laut
> Definition
>  0 + 0 = 0 + 0
>  0=0
>  
> für n = 1 wie gehabt

brauchst du nicht, aber wenn dann nicht wie du, sondern mit der Def oben in der du n=1 einsetzt!

>  und für n= k+1:

jetz wirklich erst die Ind.vors für k hinschreiben, dann die Def explizit benutzen um auf k+1 zu kommen!
Gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]