Beweis einer Gruppe < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 22:02 Sa 04.11.2006 | Autor: | rmtb |
Aufgabe | Zeigen oder widerlegen Sie die Behauptung, dass [mm](G,\circ)[/mm] eine Gruppe ist, wobei [mm] G = \IR \times \IR \backslash \{ 0,0 \} [/mm] und [mm]\circ : G \times G \to G [/mm]
[mm] ((x,y),(x',y')) \mapsto (x*y', x'*y) [/mm] |
Hi,
erstmal:
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Ich verstehe ja grundsätzlich, was ich bei dieser Aufgabe tun muss, nämlich Assoziativgesetz, inverse Elemente und neutrales Element beweisen. Aber mir ist nicht ganz klar, wie ich das machen soll.
Das Assoziativgesetz sagt ja:
[mm] \forall a,b,c \in G : (a \circ b)\circ c = a \circ (b\circ c) [/mm]
Da G ja [mm] \IR \times \IR \backslash \{ 0,0 \} [/mm]
ist, sage ich
[mm]a \circ b =( (a.x, a.y), (b.x, b.y) ) \mapsto (a.x*b.y, a.y*b.x)[/mm]
und das Ganze [mm] \circ c= [/mm]
[mm]((a.x*b.y, a.y*b.x), (c.x, c.y)) \mapsto (a.x*b.y*c.y, a.y*b.x*c.x)[/mm]
wenn ich jetzt aber
[mm]b \circ c [/mm]rechne
[mm]( (b.x, b.y), (c.x, c.y) ) \mapsto (b.x*c.y, b.y*c.x)[/mm]
und dann mm] a [mm] \circ [/mm] [/mm]das Ergebnis, bekomme ich
[mm]((a.x, a.y), (b.x*c.y, b.y*c.x)) \mapsto (a.x*b.y*c.x, a.y*b.x*c.y)[/mm]
was ja nicht dasselbe ist. -> keine Gruppe?
Ist das richtig so, oder was habe ich falsch verstanden? Und wie würde ich inverse Elemente bzw. neutrales Element nachweisen, falls es denn eine Gruppe wäre?
Viele Grüße,
Klara
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 00:38 So 05.11.2006 | Autor: | leduart |
Hallo
> Zeigen oder widerlegen Sie die Behauptung, dass [mm](G,\circ)[/mm]
> eine Gruppe ist, wobei [mm]G = \IR \times \IR \backslash \{ 0,0 \}[/mm]
> und [mm]\circ : G \times G \to G[/mm]
> [mm]((x,y),(x',y')) \mapsto (x*y', x'*y)[/mm]
>
> Ich verstehe ja grundsätzlich, was ich bei dieser Aufgabe
> tun muss, nämlich Assoziativgesetz, inverse Elemente und
> neutrales Element beweisen. Aber mir ist nicht ganz klar,
> wie ich das machen soll.
> Das Assoziativgesetz sagt ja:
> [mm]\forall a,b,c \in G : (a \circ b)\circ c = a \circ (b\circ c)[/mm]
>
> Da G ja [mm]\IR \times \IR \backslash \{ 0,0 \}[/mm]
> ist, sage ich
>
> [mm]a \circ b =( (a.x, a.y), (b.x, b.y) ) \mapsto (a.x*b.y, a.y*b.x)[/mm]
> und das Ganze [mm]\circ c=[/mm]
> [mm]((a.x*b.y, a.y*b.x), (c.x, c.y)) \mapsto (a.x*b.y*c.y, a.y*b.x*c.x)[/mm]
>
> wenn ich jetzt aber
> [mm]b \circ c [/mm]rechne
> [mm]( (b.x, b.y), (c.x, c.y) ) \mapsto (b.x*c.y, b.y*c.x)[/mm]
>
> und dann mm] a [mm]\circ[/mm] [/mm]das Ergebnis, bekomme ich
> [mm]((a.x, a.y), (b.x*c.y, b.y*c.x)) \mapsto (a.x*b.y*c.x, a.y*b.x*c.y)[/mm]
Ich komm durch deine Schreibweise nur schwer durch [mm] (a_1,a_2) [/mm] wäre viel leichter zu lesen. Aber du hast recht und bewiesen, dass es keine Gruppe ist und bist damit fertig!
Gruss leduart
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 08:40 So 05.11.2006 | Autor: | rmtb |
Dankeschön! - a.x und a.y kommen vom Programmieren =)
Hat mir sehr geholfen
Klara
|
|
|
|