matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraBeweis einer Gruppe
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Algebra" - Beweis einer Gruppe
Beweis einer Gruppe < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis einer Gruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:02 Sa 04.11.2006
Autor: rmtb

Aufgabe
Zeigen oder widerlegen Sie die Behauptung, dass [mm](G,\circ)[/mm] eine Gruppe ist, wobei [mm] G = \IR \times \IR \backslash \{ 0,0 \} [/mm] und [mm]\circ : G \times G \to G [/mm]
[mm] ((x,y),(x',y')) \mapsto (x*y', x'*y) [/mm]

Hi,
erstmal:
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Ich verstehe ja grundsätzlich, was ich bei dieser Aufgabe tun muss, nämlich Assoziativgesetz, inverse Elemente und neutrales Element beweisen. Aber mir ist nicht ganz klar, wie ich das machen soll.
Das Assoziativgesetz sagt ja:
[mm] \forall a,b,c \in G : (a \circ b)\circ c = a \circ (b\circ c) [/mm]
Da G ja [mm] \IR \times \IR \backslash \{ 0,0 \} [/mm]
ist, sage ich

[mm]a \circ b =( (a.x, a.y), (b.x, b.y) ) \mapsto (a.x*b.y, a.y*b.x)[/mm]
und  das  Ganze [mm] \circ c= [/mm]
[mm]((a.x*b.y, a.y*b.x), (c.x, c.y)) \mapsto (a.x*b.y*c.y, a.y*b.x*c.x)[/mm]

wenn ich jetzt aber
[mm]b \circ c [/mm]rechne
[mm]( (b.x, b.y), (c.x, c.y) ) \mapsto (b.x*c.y, b.y*c.x)[/mm]
und dann mm] a [mm] \circ [/mm]  [/mm]das Ergebnis, bekomme ich
[mm]((a.x, a.y), (b.x*c.y, b.y*c.x)) \mapsto (a.x*b.y*c.x, a.y*b.x*c.y)[/mm]

was ja nicht dasselbe ist. -> keine Gruppe?

Ist das richtig so, oder was habe ich falsch verstanden? Und wie würde ich inverse Elemente bzw. neutrales Element nachweisen, falls es denn eine Gruppe wäre?
Viele Grüße,
Klara

        
Bezug
Beweis einer Gruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 00:38 So 05.11.2006
Autor: leduart

Hallo
> Zeigen oder widerlegen Sie die Behauptung, dass [mm](G,\circ)[/mm]
> eine Gruppe ist, wobei [mm]G = \IR \times \IR \backslash \{ 0,0 \}[/mm]
> und [mm]\circ : G \times G \to G[/mm]
>  [mm]((x,y),(x',y')) \mapsto (x*y', x'*y)[/mm]
>  

> Ich verstehe ja grundsätzlich, was ich bei dieser Aufgabe
> tun muss, nämlich Assoziativgesetz, inverse Elemente und
> neutrales Element beweisen. Aber mir ist nicht ganz klar,
> wie ich das machen soll.
>  Das Assoziativgesetz sagt ja:
>  [mm]\forall a,b,c \in G : (a \circ b)\circ c = a \circ (b\circ c)[/mm]
>  
> Da G ja [mm]\IR \times \IR \backslash \{ 0,0 \}[/mm]
>  ist, sage ich
>  
> [mm]a \circ b =( (a.x, a.y), (b.x, b.y) ) \mapsto (a.x*b.y, a.y*b.x)[/mm]

> und  das  Ganze [mm]\circ c=[/mm]
>  [mm]((a.x*b.y, a.y*b.x), (c.x, c.y)) \mapsto (a.x*b.y*c.y, a.y*b.x*c.x)[/mm]
>  
> wenn ich jetzt aber
> [mm]b \circ c [/mm]rechne
>  [mm]( (b.x, b.y), (c.x, c.y) ) \mapsto (b.x*c.y, b.y*c.x)[/mm]
>  
> und dann mm] a [mm]\circ[/mm]  [/mm]das Ergebnis, bekomme ich
>  [mm]((a.x, a.y), (b.x*c.y, b.y*c.x)) \mapsto (a.x*b.y*c.x, a.y*b.x*c.y)[/mm]

Ich komm durch deine Schreibweise nur schwer durch [mm] (a_1,a_2) [/mm] wäre viel leichter zu lesen. Aber du hast recht und bewiesen, dass es keine Gruppe ist und bist damit fertig!
Gruss leduart

Bezug
                
Bezug
Beweis einer Gruppe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:40 So 05.11.2006
Autor: rmtb

Dankeschön! - a.x und a.y kommen vom Programmieren =)
Hat mir sehr geholfen
Klara

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]