matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikBeweis eines Lemmas verstehen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Stochastik" - Beweis eines Lemmas verstehen
Beweis eines Lemmas verstehen < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis eines Lemmas verstehen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 07:12 Do 02.11.2017
Autor: Septime

Aufgabe
Lemma: Sei f eine beschränkte, messbare Funktion und seien [mm] x^{(1)},...,x^{(N)} [/mm] u.i.v. Stichproben einer möglicherweisen zufälligen Wahrscheinlichkeitsverteilung [mm] \nu. [/mm] Dann gilt
sup [mm] _{\parallel f \parallel_\infty \le 1} \parallel \integral{f(x) \nu(dx)}-\bruch{1}{N}\summe_{i=1}^{N}f(x^{(i)})\parallel_2 \le \bruch{1}{\wurzel[]{N}}, [/mm] wobei [mm] \parallel X\parallel_2 [/mm] = [mm] \wurzel[]{E(X^2)} [/mm]

Hallo,

dies ist ein Lemma von der Monte Carlo Theorie, worin ich noch nicht wirklich vertraut bin, deswegen verstehe ich noch einige Sachen in der Musterlösung nicht:

Wegen Unabhängigkeit der x gegeben [mm] \nu [/mm] gilt
[mm] E[(\integral{f(x) \nu(dx)} -\bruch{1}{N}\summe_{i=1}^{N}f(x^{(i)}))^2|\nu] [/mm]
= [mm] \bruch{1}{N^2} \summe_{i,j=1}^{N}E(f(x^{(j)})f(x^{(i)})|\nu)-(\integral{f(x) \nu(dx)})^2 [/mm]
= [mm] \bruch{1}{N}\integral{f(x)^2 \nu(dx)} [/mm] + [mm] (\bruch{N^2-N}{N^2} [/mm] - 1 [mm] )(\integral{f(x) \nu(dx)})^2 [/mm]
= [mm] \bruch{1}{N}(\integral{f(x)^2 \nu(dx)} [/mm] - [mm] (\integral{f(x) \nu(dx)})^2) [/mm]
[mm] \le \bruch{\parallel f \parallel_\infty }{N} [/mm]

Unzwar:

1. Woher kommt die bedingte Erwartung aufeinmal her in der ersten Zeile ? Welche Definition wird genutzt ?
2. Ist die Notation [mm] \nu(dx) [/mm] das selbe wie [mm] d\nu(x) [/mm] ?
3. Wie kommt man auf die erste Gleichung ? Wenn man quadriert, müsste
[mm] -\bruch{1}{N}E( \integral{f(x) \nu(dx)} [/mm] * [mm] \summe_{i=1}^{N}f(x^{(i)}) [/mm] | [mm] \nu) [/mm] = 0 sein. Warum gilt das ?
4. Die nächste Zeile verstehe ich auch nicht. Wenn man alles zurückrechnet, müsste
[mm] \summe_{i,j=1}^{N}E(f(x^{(j)}f(x^{(i)})|\nu) [/mm] = [mm] N\integral{f(x)^2\nu(dx)}+(N^2-N)(\integral{f(x) \nu(dx)})^2 [/mm]
gelten, aber auch hier weiß ich nicht warum das gelten sollte.
5. In der letzten Ungleichung weiß ich auch nicht, woher diese Abschätzung kommt.

Ich bedanke mich im voraus.

Viele Grüße
Septime

        
Bezug
Beweis eines Lemmas verstehen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:20 Mi 08.11.2017
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 3h 0m 7. Tobikall
UAnaR1Funk/L Beweis ohne Logarithmusdef.
Status vor 5h 32m 8. leduart
UAnaR1/Reaktion - erwünscht
Status vor 6h 10m 2. Infinit
USons/Punktwolken vergleichen?
Status vor 8h 57m 1. alex1992
UStoc/Beweis Signifikanzniveau
Status vor 15h 01m 2. Diophant
ZahlTheo/Diophantische Gleichung 3 Var
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]