matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenBeweis g-adischer entwicklung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Beweis g-adischer entwicklung
Beweis g-adischer entwicklung < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis g-adischer entwicklung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:17 Di 28.10.2008
Autor: Vic_Burns

Aufgabe
Sei g eine natürliche Zahl, größer 1. Zu zeigen: Jede natürliche Zahl [mm] n\in\IN [/mm] lässt sich eindeutig darstellen in der Form [mm] n=\sum_{i=0}^{m} a_i*g^i [/mm] mit [mm] 0\le a_i\le g-1 [/mm] und [mm] a_m\ne 0 [/mm]

Hallo zusammen!
Ich habe versucht obige Aufgabe zu lösen, bin auch auf eine Idee gekommen und wollt mal hören, ob ich das so lassen kann.

mein Beweis:

wähle g=n (weiß ich nicht ob ich das darf) , dann folgt:
[mm] n=a_1*g^1, [/mm] also n=1*n
dies gilt aber nur für g,n>1, daher muss die behauptung noch für n=1 gezeigt werden. Sei nun g eine beliebige Zahl größer 1, dann folgt mit [mm] b^0=1: [/mm]
[mm] 1=1*g^0 [/mm] <=> 1=1
damit sollte die behauptung für alle natürlichen Zahlen gezeigt sein.

kann ich das so lassen? bin mir nicht so sicher, weils mir dafür ziemlich einfach vorkommt. ansonsten hatte ich überlegt es mit vollständiger induktion zu machen, was aber wahrscheinlich einiges an schreibarbeit wäre. deshalb erst mal so. danke schonmal für alle antworten
gruß

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Beweis g-adischer entwicklung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:37 Di 28.10.2008
Autor: angela.h.b.


> Sei g eine natürliche Zahl, größer 1. Zu zeigen: Jede
> natürliche Zahl [mm]n\in\IN[/mm] lässt sich eindeutig darstellen in
> der Form [mm]n=\sum_{i=0}^{m} a_i*g^i[/mm] mit [mm]0\le a_i\le g-1[/mm] und
> [mm]a_m\ne 0[/mm]
>  Hallo zusammen!
>  Ich habe versucht obige Aufgabe zu lösen,

Hallo,

[willkommenmr].

Ich glaube, Du hast überhaupt nicht verstanden, worum es bei der Aufgabe geht, und das will ich Dir erklären, bevor Du dann einen neuen Beweisversuch startest.


Nehmen wir mal g=7.

Es wird jetzt behauptet, daß Du für jede natürliche Zahl, etwa für n=3267, eine Darstellung als endliche Summe von Siebenerpotenzen findest, daß Du also z.B. für 3267 Zahlen [mm] a_i [/mm] mit [mm] 0\le a_i\le [/mm] 6,  [mm] a_m\not=0, [/mm]  findest so, daß

[mm] 3257=a_m*7^m+a_{m-1}*7^{m-1}+ [/mm] ...+ [mm] a_1*7^1+ a_0*7^0. [/mm]

Weiter wird behauptet, daß diese Darstellung  eindeutig ist.

Vielleicht denkst Du jetzt nochmal ein wenig drüber nach. (Man findet das übrigens auch in vielen Büchern.)

Gruß v. Angela



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]