matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTopologie und GeometrieBeweis im Sehnenviereck
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Topologie und Geometrie" - Beweis im Sehnenviereck
Beweis im Sehnenviereck < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis im Sehnenviereck: Beweis
Status: (Frage) beantwortet Status 
Datum: 01:07 Mi 10.01.2007
Autor: dasam

Aufgabe
Zeigen Sie: Bei jedem Sehnenviereck gehen die Mittellote (Mittelsenkrechten) aller Seiten durch den Mittelpunkt seines Umkreises.

Hallo,
ich bin nicht sicher, ob das so der richtige Ansatz ist:
Sehnenviereck ABCD; Diagonalen AC und BD ziehen und beweisen, dass sich die Mittelsenkrechten der Seiten des Dreiecks ABC in seinem Umkreismittelpunkt treffen; das gleiche dann für Dreieck BCD.
Wäre das dann alles?
Gruß
Dasam


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Beweis im Sehnenviereck: Antwort
Status: (Antwort) fertig Status 
Datum: 04:04 Mi 10.01.2007
Autor: Walty


> Zeigen Sie: Bei jedem Sehnenviereck gehen die Mittellote
> (Mittelsenkrechten) aller Seiten durch den Mittelpunkt
> seines Umkreises.
>  Hallo,
>  ich bin nicht sicher, ob das so der richtige Ansatz ist:
>  Sehnenviereck ABCD; Diagonalen AC und BD ziehen und
> beweisen, dass sich die Mittelsenkrechten der Seiten des
> Dreiecks ABC in seinem Umkreismittelpunkt treffen; das
> gleiche dann für Dreieck BCD.
>  Wäre das dann alles?
>  Gruß
>  Dasam

Ist der Beweis mit dem Umkreis einfach, oder Euch als bewiesener Satz gegeben?

Mir fällt spontan ein, dass ich ja wenn ich die Radien zu den Eckpunkten einzeichne, ich über jeder beliebigen Sehne (oBdA! -ob sie nun zu einem Viereck gehört, oder peng) ein gleichschenkliges Dreieck aufspanne.

Das Dreick ABM sei nun zu untersuchen. Der Mittelpunkt der Sehne [AB] sei Q. Die Seitenhalbierende von M nach [AB] schneidet in Q. Es entstehen 2 Dreiecke AMQ und MBQ. Per Konstruktion sind aber nun die Seiten [MA]und [MB]gleichlang (=r) sowie auch die Seiten [AQ] und [QB]. Die Strecke [MQ] haben beide Dreiecke gemeinsam. Damit sind sie aber nach dem SSS-satz auch kongruent. Daraus folgt unmittelbar, dass die entsprechenden Winkel in den Dreiecken gleich groß sein müssen. Insbesondere die Winkel bei Q. Da Q auf [AB] liegt, ergibt sich dass beide Winkel = 90° sein müssen (Aussenwinkel = Innenwinkel) dh. aber auch dass MQ (oBdA) nicht nur die Seitenhalbierenbde, sondern gleichzeitig die Mittelsenkrechte des Dreiecks AMB ist.

q.e.d.

Bezug
                
Bezug
Beweis im Sehnenviereck: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:02 Do 25.01.2007
Autor: dasam

Jetzt muss ich doch noch einmal nachfragen:
Der Mittelpunkt des Kreises ist nicht gegeben - also ist das mit den Radien doch hinfällig!?
Oder kann ich einfach sagen, dass M durch die Mittellote zweier Sehnen konstruiert werden kann, um anschließend mit deinem Beweis fortzufahren?
Oder gibt es noch eine weitere Möglichkeit, das ganze zu beweisen?

Bezug
                        
Bezug
Beweis im Sehnenviereck: Antwort
Status: (Antwort) fertig Status 
Datum: 01:16 Fr 26.01.2007
Autor: leduart

Hallo
Fuer einen Beweis muss der Mittelpunkt nicht gegeben sein! Es muss nur klar sein, dass ein Kreis einen hat, der von allen Kreispunkten denselben Abstand r hat.
dann weiss man, dass die dreiecke gleichscheklig sind usw. usw.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]