matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeBeweis linearer Abhängigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Moduln und Vektorräume" - Beweis linearer Abhängigkeit
Beweis linearer Abhängigkeit < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis linearer Abhängigkeit: Aufgabe 2
Status: (Frage) überfällig Status 
Datum: 01:55 So 03.12.2006
Autor: Vielfrager

Aufgabe
Es seien [mm]V[/mm] ein [mm]K[/mm]-Vektorraum, [mm]n\in\IN[/mm],[mm]\left\{u_1,...,u_n\right\} \subset V^n[/mm]
linear unabhängig in [mm]V[/mm], [mm]\alpha_1,...,\alpha_n \subset K[/mm] und [mm]u := \sum_{j=1}^n \alpha_j u_j \subset V[/mm].

Zeigen Sie:

a) Das Menge [mm]\left\{u_1-u,...,u_n-u\right\} \subset V^n[/mm] ist genau dann linear abhängig, wenn [mm]\sum_{j=1}^{n} \lambda_j=1[/mm]

b) Ist [mm]\alpha_1 \not= 0[/mm], so ist [mm]\left\{u,u_2,...,u_n\right\}[/mm] linear unabhängig in [mm]V[/mm].

-Ich habe diese Frage in keinem anderen Forum gestellt-

Also Leute, ich brauche einen Tip um hier weiterzukommen.

Zunächst einmal die Aufgabenstellung ist EXAKT abgeschrieben. Ich vermute aber es sind Fehler darin. Nach meinen bisherigen Überlegungen könnte man Lambda durch Alpha ersetzen in der Summe Teilaufg. a) Außerdem heißt es bekanntlich "Die" Menge ... aber ist ja auch keine Deutschaufgabe.

Teilaufg. b) scheint mir leicht, wenn ich erst a) gezeigt habe, denn es würde ja bedeuten, dass die Summe aller Lambda-i ungleich 1 ist für alle u2 bis un und damit diese sehr schwache Bedingung zerstört ist. Jedenfalls glaube ich, es dürfte leichter sein, wenn ich a) kapiert habe, genau da liegt nämlich MEIN PROBLEM:

Bisher habe ich mir das ganze mit kanonischen Basen vorgestellt und auch im R2 visualisiert. Es hat sich ein interessanter Effekt gezeigt: Die Operation im Aufgabentext transformiert nämlich e1 und e2 so, dass sie beide im selben Spann(e1)=Spann(e2) liegen (voneinander weg zeigend auf einer Geraden durch den Ursprung). Sie sind also natürlich linear abhängig. Aber da ich ja wohl für einen mehrdimensionalen Vektorraum keinen geometrischen Beweis führen kann hilft mir das zunächst wenig.

Dann dünkte mir, dass es irgendwas mit einer Symmetrie um die Null zu tun haben könnte. Denn wähle ich z.B. zwei verschieden Alpha=1/2, so werden zwei Vektoren [mm] (u_i-u) [/mm] durch die Symmetrie der Subtraktion von 1-1/2 und 0-1/2 zu gegenseitigen Vielfachen! Oder wähle ich nur ein Alpha=1, so wird ein Vektor [mm] u_i-u [/mm] zum Nullvektor, der ja per Definition linear abhängig ist! Schön und gut, aber dieses Sammelsurium an Einzelfällen nützt mir nichts, weil ich kein verbindendes Element erkennen kann, um zu verallgemeinern! Also in welche Richtung ist zu denken um in der Sache voranzukommen? Ich bin zwar kein Mathematiker, habe aber noch einige Tage Zeit und plane diese Aufgabe zu erledigen. Es ist ja auch köstlich es immer wieder zu durchdenken. Aber leider gibt es diese Abgabetermine und weil ja auch alle Zeit Geld kostet benötige ich jetzt einen Anstoss.

Also herbei mit euren Tipps ... vielleicht ist es ja auch einfacher es indirekt zu zeigen und Aufg. b) gleich mitzunehmen. Aber ich muss zugeben, dass das mich im Moment noch überfordert. Naja wie dem auch sei. Bitte antwortet möglichst rasch! Ich werde ihn jetzt suchen, wohl aber keinen Schlaf finden mit dieser Frage im Kopf.

        
Bezug
Beweis linearer Abhängigkeit: Bestätigung - "Hin-Richtung"
Status: (Antwort) fertig Status 
Datum: 08:21 So 03.12.2006
Autor: zahlenspieler

Hallo Vielfrager,
na ich hoffe mal die Aufgabe hat Dir nicht den Schlaf geraubt :-).
Du schreibst, man könnte in Teil a) der Aufgabenstellung [mm] $\lambda$ [/mm] durch [mm] $\alpha$ [/mm] ersetzen. Das muß man sogar :-).
Also angenommen, die Vektoren [mm] $u_1 [/mm] -u, [mm] \ldots, u_n [/mm] -u$ seien linear unabhängig; d.h. es gibt eine "nichttriviale" Darstellung (also eine Linearkombination mit wenigstens einem Koeffizienten von 0 verschieden) des Nullvektors durch die Vektoren [mm] $u_i [/mm] -u, [mm] \quad i=1,\ldots,n$: [/mm]
[mm]\vec{0}=\summe_{i=1}^n \lambda_i(u_i -u)[/mm].
Form das mal'n büschn um, so daß eine Darstellung eines Vielfachen von $u$ herauskommt: Der Clou ist, daß wegen der linearen Unabhängigkeit der [mm] $u_i$ [/mm] die Darstellung eindeutig ist.
Mfg
zahlenspieler

Bezug
                
Bezug
Beweis linearer Abhängigkeit: Loesungsvorschlag
Status: (Frage) überfällig Status 
Datum: 13:06 So 03.12.2006
Autor: Vielfrager

Aufgabe
Aufgabenstellung wie beim root-Post dieses Threads!

Hallo nochmal Zahlenspieler et al.

Ich habe nun nach deinem Tipp eine Lösung ausgearbeitet und bitte um rasche Überprüfung. Sie scheint mir ausreichend schlüssig:

LÖSUNGSVORSCHLAG

Gelte also [mm] \overrightarrow{0} = \sum_{i=1}^{n} \lambda_i (u_i - u) [/mm]

(Dann sei [mm]\lambda_i \not= 0[/mm])

[mm] = \sum_{i=1}^{n} (\lambda_i u_i) - \sum_{i=1}^{n} (\lambda_i u) [/mm]

(Nun schränken wir weiter ein: Sei [mm]\lambda_i = \alpha_i[/mm])

[mm] = u - \sum_{i=1}^{n} (\lambda_i u)[/mm]

[mm] = u - u (\sum_{i=1}^{n} \lambda_i) [/mm]

(Und nur mit der weiteren Einschränkung: [mm]\sum_{i=1}^{n} \lambda_i = 1[/mm])

[mm] = u - u * 1 = 0 [/mm]

Es ist also offensichtlich, dass die Bedingung nur dann erfüllt ist, wenn [mm] (\lambda_i = \alpha_i) \wedge (\sum_{i=1}^{n} \lambda_i = 1) \gdw \sum_{i=1}^{n} \alpha_i = 1[/mm]

Mithin gilt auch die "Rückrichtung" des Beweises unter den Einschränkungen, da es sich durchweg um Äquivalenzumformungen handelt.

Ist das so i.O.??

Bezug
        
Bezug
Beweis linearer Abhängigkeit: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:21 So 03.12.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]