matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraBeweis linerare Unabhängigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - Beweis linerare Unabhängigkeit
Beweis linerare Unabhängigkeit < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis linerare Unabhängigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:23 Sa 15.01.2005
Autor: MrElgusive

Hallo!

Ich habe bei folgender Aufgabe keine richtigen Anhaltspunkt, aber lest selbst:

Zeigen oder widerlegen Sie: Ist M  [mm] \subseteq [/mm] [mm] \IR [/mm] linear unabhängig in [mm] ( \IR,+) [/mm] über  [mm] \IQ [/mm], so auch in [mm] ( \IR,+) [/mm] über [mm] \IR [/mm]?

Irgendeinen Trick muss es bei der Aufgabe geben, wahrscheinlich muss man ein geschicktes Gegenbeispiel finden...

Danke im Voraus.
  Christian.

        
Bezug
Beweis linerare Unabhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 16:56 Sa 15.01.2005
Autor: andreas

hallo christian

hier würde ich es mal mit widerlegen probieren. betrachtets du [m] \mathbb{R} = \mathbb{R}^1 [/m] also [m] \mathbb{R} [/m]-vektorraum, so ist dieser $1$-dimensional, eine basis ist z.b. [m] \{1\} [/m]. als [m] \mathbb{Q} [/m]-vektorraum ist [m] \mathbb{R} = \mathbb{R}^1 [/m] jedoch [mm] $\infty$-dimensional. [/mm]


betrachte hier z.b. konkret die menge [m] M := \{1, \sqrt{2} \} \subset \mathbb{R} [/m]. über [m] \mathbb{R} [/m] ist diese mit sicherheit linear abhängig, denn wähle z.b. [m] \mu = \sqrt{2}, \nu = -1 [/m], dann ist die gleichung

[m] \mu1 + \nu \sqrt{2} = 0 [/m]

offensichtlich nicht-trivial erfüllt.

angenommen $M$ wäre auch über [mm] $\mathbb{Q}$ [/mm] linear abhängig, dann gäbe es [m] \mu, \nu \in \mathbb{Q} [/m], so dass

[m] \mu1 + \nu \sqrt{2} = 0 [/m].

dann gilt aber auch [m] \nu \sqrt{2} = - \mu [/m] und wenn du [m] \nu \not= 0 [/m] annimmst (was du hier natürlich darfst, da sonst [mm] $\mu$ [/mm] auch null sein müsste), gilt also

[m] \sqrt{2} = - \frac{\mu}{\nu} \in \mathbb{Q} [/m].

was ja wohl ein widerspruch ist!


grüße
andreas

Bezug
                
Bezug
Beweis linerare Unabhängigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:12 Sa 15.01.2005
Autor: MrElgusive

Hallo Andreas!

Danke wieder einmal für deine prompte Antwort, aber mir ist noch ein Schritt in deiner Argumentation unklar.

"(...) als [m] \IQ [/m] Vektorraum ist [m] \IR = \IR^{1} [/m] jedoch [m] \infty [/m] - dimensional."

Grüße,
  Christian.

Bezug
                        
Bezug
Beweis linerare Unabhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 18:20 Sa 15.01.2005
Autor: andreas

hi Christian


das gehört nicht zu meiner argumentation, das wollte ich nur mal anmerken (ist aber mit einem mächtigkeitsargument nicht so schwer zu zeigen - brauchst du hier aber wirklich nicht). ich wollte damit nur meinen ansatz begründen, das man probiert es zu wiederlegen und nicht probiert die aussage zu beweisen!


die antwort geht eigentlich bei "betrachte hier z.b. konkret ..." los.


grüße
andreas




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]