matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraBeweis minimaler Rang Matrizen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - Beweis minimaler Rang Matrizen
Beweis minimaler Rang Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis minimaler Rang Matrizen: Frage: Warum ist der Rang klei
Status: (Frage) beantwortet Status 
Datum: 22:46 Do 21.04.2005
Autor: webbroki

Hallo!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Ich habe auf mehreren Seiten die folgende Aussage zum Rang von Matrizen gefunden: [mm]rang(AB) \le \min \{rang(A),rang(B) \}[/mm].
Kann mir jemand einen Beweis zeigen, warum dies gilt ??

Vom logischen müsste man beweisen, dass sich der Rand einer Matrix nicht erhöhen kann. D.h. die Anzahl der unabhängigen variablen ändert sich nicht.
Ich weiß aber nicht, wie ich das mathematisch formulieren kann :-(

Vielen Dank
Tom

        
Bezug
Beweis minimaler Rang Matrizen: Antwort (nicht fertig)
Status: (Antwort) noch nicht fertig Status 
Datum: 23:40 Do 21.04.2005
Autor: choosy


> Hallo!
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  Ich habe auf mehreren Seiten die folgende Aussage zum Rang
> von Matrizen gefunden: rang(AB) [mm] \le \min \{rang(A),rang(B) \} [/mm]

Hi, also wenn man bedenkt, das man die Matrizen A und B auch als lineare Abbildungen zwischen 2 Vektorräumen betrachten kann ist es nicht so schwer.
Der Rang ist dann Nämlich einfach die Dimension des Bildes ( Range oder R(A):

rang(A) = dim R(A)
rang(B) = dim R(B)

Was ist jetzt AB als Abbildung? naja
ABx = A(Bx)) ,x aus dem Vektorraum also gilt hier (wenn wir mal als VR v nehmen:

$R(AB) = A( R(B) ) [mm] \subset [/mm] A(V) = R(A)$

das heist aber $rang AB = dim R(AB) [mm] \leq [/mm] dim R(A) = rang A$

was macht man nun mit B:
nun hat A vollen rang ist A bijektiv, fertig.
hat A nicht vollen Rang ist A nicht surjektiv, weshalb
$dim [mm] R(A|_{R(B)}) [/mm] < R(B)$ ist

Bezug
        
Bezug
Beweis minimaler Rang Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:50 Fr 22.04.2005
Autor: bazzzty

Ich versuche es mal möglichst anschaulich, d.h. ohne den Weg über Dimensionen von Bildräumen. Und ich zeige mal nur, daß
[mm]\mathit{rang}(AB)\leq\mathit{rang}(B)[/mm], den anderen Teil kannst Du Dir dann selbst überlegen (denk' über die Transponierte nach!):

Der Rang von [mm]B[/mm] ist gleich dem Spaltenrang, d.h. der maximalen Zahl von lin. unabhängigen Spalten von [mm]B[/mm]. Das heißt, aus [mm]B=(b_1, b_2, \dots, b_m)[/mm] lassen sich [mm]\mathit{rang}(B)[/mm] Spalten [mm]S_B[/mm] so auswählen, daß diese Spalten lin. unabhängig sind, und die restlichen sich als Linearkombinationen ausdrücken lassen.

Die Matrix [mm]AB[/mm] besteht aus den Spalten [mm]\left(Ab_1, Ab_2,\dots)[/mm].
Unabhängig davon, ob die Spalten [mm]S_B[/mm] auf linear unabhängie Vektoren abgebildet wurden oder nicht (das entscheidet über [mm]=[/mm] oder [mm]<[/mm]), die Spalten [mm]Ab_i, i\not\in S_B[/mm] lassen sich immer noch in derselben Weise wie vorher durch Linearkombination der Spalten von [mm]Ab_i, i\in S_B[/mm] darstellen, der Spaltenrang von [mm]AB[/mm] ist also nie größer als der von [mm]B[/mm].


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]