matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - EigenwerteBeweis mit Eigenwerten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Eigenwerte" - Beweis mit Eigenwerten
Beweis mit Eigenwerten < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis mit Eigenwerten: Anfang, Tipp, Folgerung
Status: (Frage) beantwortet Status 
Datum: 21:08 Do 07.01.2010
Autor: LariC


Hallo, haben gerade erst Eigenwerte eingefürhrt und ich kann damit noch nicht so richtig umgehen, was könnte ich denn als ersten Zwisxchenschritt nehmen - wie muss ich anfangen und was ist das wichtige dabei?! kann mir da jemand helfen?

        
Bezug
Beweis mit Eigenwerten: Antwort
Status: (Antwort) fertig Status 
Datum: 21:29 Do 07.01.2010
Autor: angela.h.b.


> [mm]A\in[/mm] K^nxn
>  zu zeigen ist: Wenn [mm]\lambda \in[/mm] K ein Eigenwert von A und
> v ein zugehhöriger Eigenvektor ist, so ist [mm]\lambda^k[/mm] ein
> Eigenwert von [mm]A^k[/mm] und v ein zugehöriger Eigenvektor für
> jede natürliche Zahl k [mm]\in[/mm] IN
>  Hallo, haben gerade erst Eigenwerte eingefürhrt und ich
> kann damit noch nicht so richtig umgehen, was könnte ich
> denn als ersten Zwisxchenschritt nehmen - wie muss ich
> anfangen und was ist das wichtige dabei?! kann mir da
> jemand helfen?

Hallo,

schreib erstmal auf, was es bedeutet, daß [mm] \lambda [/mm] ein Eigenwert von A ist und v ein zugehöriger Eigenvektor.

Berechne dann mal [mm] A^{2}v, A^{3}v, A^{v}. [/mm]

Gruß v. Angela


Bezug
                
Bezug
Beweis mit Eigenwerten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:53 Do 07.01.2010
Autor: LariC

Also, laut Definition gilt dann ja:
A(v)= [mm] \lambda*v [/mm]

Allerdings ist mir jetzt nicht ganz klar, was du mit A^2v meinst, denn dann wäre 2v ja [mm] \in [/mm] IN, und dass muss ja nicht der Fall sein! Und wie soll ich das berechnen - habe das irgendwie noch nicht so kapiert!

Bezug
                        
Bezug
Beweis mit Eigenwerten: Antwort
Status: (Antwort) fertig Status 
Datum: 22:14 Do 07.01.2010
Autor: angela.h.b.


> Also, laut Definition gilt dann ja:
>  A(v)= [mm]\lambda*v[/mm]
>  
> Allerdings ist mir jetzt nicht ganz klar, was du mit A^2v

Hallo,

ich meine [mm] A^{2}v=A*A*v. [/mm]

Gruß v. Angela

> meinst, denn dann wäre 2v ja [mm]\in[/mm] IN, und dass muss ja
> nicht der Fall sein! Und wie soll ich das berechnen - habe
> das irgendwie noch nicht so kapiert!


Bezug
                                
Bezug
Beweis mit Eigenwerten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:26 Do 07.01.2010
Autor: LariC

Achso - dann müsste das folgendes sein(wenn es da nicht wieder irgendeinen Speialfall für matrizenmult. zu beachten gibt :( ):
[mm] A*v=\lambda*v [/mm]
A*A*v= [mm] \lambda [/mm] *v*A
A*A*A*v= [mm] \lambda*v*A*A [/mm]
[mm] A^v*v=\lambda [/mm] *v*A^(v-1)

Bezug
                                        
Bezug
Beweis mit Eigenwerten: Antwort
Status: (Antwort) fertig Status 
Datum: 22:55 Do 07.01.2010
Autor: schachuzipus

Hallo LariC,

> Achso - dann müsste das folgendes sein(wenn es da nicht
> wieder irgendeinen Speialfall für matrizenmult. zu
> beachten gibt :( ):
>  [mm]A*v=\lambda*v[/mm]
>  A*A*v= [mm]\lambda[/mm] *v*A
>  A*A*A*v= [mm]\lambda*v*A*A[/mm]
>  [mm]A^v*v=\lambda[/mm] *v*A^(v-1)
>  

hmm...

Es ist doch [mm] $\red{A^2v}=A(Av)=A(\lambda v)=\lambda(Av)=\lambda(\lambda v)=\red{\lambda^2 v}$ [/mm]

Also [mm] $\lambda^2$ [/mm] Eigenwert zu [mm] $A^2$ [/mm]


[mm] $\red{A^3v}=A^2(Av)=A^2(\lambda v)=\lambda A(Av)=\lambda A(\lambda v)=\lambda^2(Av)=\red{\lambda^3 v}$ [/mm] usw.

Also [mm] $\lambda^3$ [/mm] EW zu [mm] $A^3$ [/mm]

Nun bastel mal einen netten Induktionsbeweis daraus, das Verfahren sollte nun klar sein ...

LG

schachuzipus

Bezug
                                                
Bezug
Beweis mit Eigenwerten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:05 Do 07.01.2010
Autor: LariC

Ja...klar so ist es einleuchtend - habe mich mittlerweile auch bei wiki schlauer gelesen - sollte das jetzt wohl hinbekommen - danke euch!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]