matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieBeweis mit Kettenbruchentw.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Zahlentheorie" - Beweis mit Kettenbruchentw.
Beweis mit Kettenbruchentw. < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis mit Kettenbruchentw.: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 19:05 Do 25.05.2006
Autor: Stylar

Aufgabe
a) Gegeben [mm] \alpha \in \IR [/mm] sowie eine natürliche Zahl d>1. Mittels Kettenbruchentwicklung zeige man, dass es ganze Zahlen x und y gibt mit 0<x<d und [mm] |x\alpha-y| \le1/d. [/mm]
b) Gegeben sei eine natürliche Zahl m>1, sowie [mm] d,e\in\IN [/mm] mit 1<d,e [mm] \le [/mm] m<de. Man zeige: ist [mm] c\in\IN [/mm] teilerfremd zu m, so gibt es [mm] x,x'\in\IZ [/mm] mit 0<x<d, 0<x'<e und [mm] x'\equiv \pm [/mm] cx mod m.
Tipp: Wende a) auf [mm] \alpha=c/m [/mm] an.

Hallo.

Ich brüte schon den lieben langen Tag über dieser Aufgabe. Leider finden sich in meinem Skript keine Hinweise, wie ich die Aufgabe lösen könnte, und dummerweise seh ich auch mal wieder keinen Ansatz...
Bei der a) ist der Teil, dass 0<x<d existieren soll, ja schon irgendwie offensichtlich. Aber ne Beweisidee will mir trotzdem nicht einfallen...
Noch schwieriger finde ich da den zweiten Teil. Wie kann man das denn mit Kettenbruchentwicklung zeigen?
Würde mich freuen, wenn ihr mir auf die Sprünge helfen würdet!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Beweis mit Kettenbruchentw.: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Fr 26.05.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]