matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMengenlehreBeweis mit Mengen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Mengenlehre" - Beweis mit Mengen
Beweis mit Mengen < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis mit Mengen: Beweisende
Status: (Frage) beantwortet Status 
Datum: 12:35 So 01.05.2016
Autor: b.reis

Aufgabe
Geben Sie einen strukturierten Beweis für folgende Mengen an:

[mm] {f(A\cap B)=f(A)\cap f(B)} [/mm]

Achtung: Eine Richtung, also entweder

[mm] {f(A\cap B)\subseteq f(A)\cap f(B)} [/mm]

oder [mm] {f(A\cap B)\supseteq f(A)\cap f(B)} [/mm] werden Sie hoffentlich nicht beweisen können.

Hallo,

Ich habe eigentlich nur eine Frage, sind

[mm] {f(A\cap B)\subseteq f(A)\cap f(B)} [/mm]

und

[mm] {f(A\cap B)\supseteq f(A)\cap f(B)} [/mm]

teil des regulären Beweises, oder ist das eine weitere Aufgabe. Wenn ja, warum muss das mit beweisen werden, wenn ich [mm] {f(A\cap B)=f(A)\cap f(B)} [/mm] bereits bewiesen habe ?

        
Bezug
Beweis mit Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:18 So 01.05.2016
Autor: fred97


> Geben Sie einen strukturierten Beweis für folgende Mengen
> an:
>  
> [mm]{f(A\cap B)=f(A)\cap f(B)}[/mm]

Lautet das wirklich so ???


>  
> Achtung: Eine Richtung, also entweder
>
> [mm]{f(A\cap B)\subseteq f(A)\cap f(B)}[/mm]
>
> oder [mm]{f(A\cap B)\supseteq f(A)\cap f(B)}[/mm] werden Sie
> hoffentlich nicht beweisen können.

Aha !

     [mm]{f(A\cap B)\supseteq f(A)\cap f(B)}[/mm]

ist i.a. falsch ! Finde ein Gegenbeispiel.


>  Hallo,
>
> Ich habe eigentlich nur eine Frage, sind
>  
> [mm]{f(A\cap B)\subseteq f(A)\cap f(B)}[/mm]
>  
> und
>  
> [mm]{f(A\cap B)\supseteq f(A)\cap f(B)}[/mm]
>  
> teil des regulären Beweises, oder ist das eine weitere
> Aufgabe. Wenn ja, warum muss das mit beweisen werden, wenn
> ich [mm]{f(A\cap B)=f(A)\cap f(B)}[/mm] bereits bewiesen habe ?  


[mm]{f(A\cap B)=f(A)\cap f(B)}[/mm]  gilt i.a. nicht.

Beweise:  [mm]{f(A\cap B)\subseteq f(A)\cap f(B)}[/mm]

FRED


Bezug
        
Bezug
Beweis mit Mengen: Antwort (nicht fertig)
Status: (Antwort) noch nicht fertig Status 
Datum: 19:15 Do 05.05.2016
Autor: oculus

Bewiesen werden soll für eine bel. Funktion f: M nach N, dass für Teilmengen A,B von M gilt

f(A [mm] \backslash [/mm] B) [mm] \supset [/mm] f(A) [mm] \backslash [/mm] f(B).




Bezug
                
Bezug
Beweis mit Mengen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:24 Do 05.05.2016
Autor: fred97


> Bewiesen werden soll für eine bel. Funktion f: M nach N,
> dass für Teilmengen A,B von M gilt
>  
> f(A [mm]\backslash[/mm] B) [mm]\supset[/mm] f(A) [mm]\backslash[/mm] f(B).

das ist eine andere Aufgabe !

fred

>  
>
>  


Bezug
                
Bezug
Beweis mit Mengen: Irrtum
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:25 Do 05.05.2016
Autor: oculus

Ich habe mich mit der Antwort, die eigentlich eine neue Frage werden sollte, vertan. Tut mir leid.

Bezug
                        
Bezug
Beweis mit Mengen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:38 Fr 06.05.2016
Autor: oculus

Falls du den Beweis von f(A [mm] \cap [/mm] B) [mm] \subseteq [/mm] f(A) [mm] \cap [/mm] f(B) noch brauchen solltest:

y [mm] \in [/mm] f(A [mm] \cap [/mm] B)
<=> [mm] \exists [/mm] x: x [mm] \in [/mm] (A [mm] \cap [/mm] B) [mm] \wedge [/mm] y = f(x)
<=> [mm] \exists [/mm] x: x [mm] \in [/mm] A [mm] \wedge [/mm] x [mm] \in [/mm] B [mm] \wedge [/mm] y = f(x)
<=> [mm] \exists [/mm] x: x [mm] \in [/mm] A [mm] \wedge [/mm] y = f(x) [mm] \wedge [/mm] x [mm] \in [/mm] B [mm] \wedge [/mm] y = f(x)

=> [mm] \exists [/mm] x: x [mm] \in [/mm] A [mm] \wedge [/mm] y = f(x) . [mm] \wedge [/mm] . [mm] \exists [/mm] x: x [mm] \in [/mm] B [mm] \wedge [/mm] y = f(x)

<=> y [mm] \in [/mm] f(A) [mm] \wedge [/mm] y [mm] \in [/mm] f(B)
<=> y [mm] \in [/mm] f(A) [mm] \cap [/mm] f(B)

Dass die Umkehrung nicht gilt, zeigt das Beispiel:
Aus "Es gibt jemand, der komponieren und dirigieren kann" kann man wohl schließen "Es gibt jemand, der komponieren kann" und "Es gibt jemand (das kann ja ein anderer sein) der dirigieren kann", aber nicht die Umkehrung.



Bezug
        
Bezug
Beweis mit Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:23 Do 05.05.2016
Autor: fred97

Wer hat die frage wieder auf "unbeantwortet " gestellt ?

fred

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]