matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperBeweis mit ggT und ZPE Ringen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gruppe, Ring, Körper" - Beweis mit ggT und ZPE Ringen
Beweis mit ggT und ZPE Ringen < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis mit ggT und ZPE Ringen: ggT, ZPE Ringe
Status: (Frage) beantwortet Status 
Datum: 16:43 Mi 17.04.2013
Autor: Integral29

Aufgabe
Seien [mm] \alpha, \beta [/mm] in [mm] O_k. [/mm] ggT [mm] (\N \alpha, \N \beta) [/mm] = 1 in [mm] \IZ. [/mm] Dann ist ggT [mm] (\alpha, \beta) [/mm] ähnlich zu 1 in [mm] O_k, [/mm] selbst dann, wenn [mm] O_k [/mm] kein ZPE Ring ist.

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:

http://www.onlinemathe.de/forum/euklidischer-Algorithmus-38

Meine Frage ist, ob die Lösung die ich im oben angegebenen Link gepostet habe so schlüssig ist. Brauche sie für einen Vortrag...

Grüße und Danke das Integrälchen.

        
Bezug
Beweis mit ggT und ZPE Ringen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:18 Mi 17.04.2013
Autor: felixf

Moin Integrälchen!

> Seien [mm]\alpha, \beta[/mm] in [mm]O_k.[/mm] ggT [mm](N \alpha, N \beta)[/mm] = 1
> in [mm]\IZ.[/mm] Dann ist ggT [mm](\alpha, \beta)[/mm] ähnlich zu 1 in [mm]O_k,[/mm]
> selbst dann, wenn [mm]O_k[/mm] kein ZPE Ring ist.

Wie man dem anderen Thread entnehmen kann, geht es um den Ganzheitsring des (quadratischen) algebraischen Zahlkoerpers $k$. Und $N$ ist die Norm-Funktion. (Wenn du \N schreibst, wird es nicht angezeigt.)

Erstmal musst du zeigen, dass es in [mm] $O_k$ [/mm] ueberhaupt einen ggT gibt. Welcher hier in Frage kommt ist $1$ (bzw. alles was dazu assoziiert ist -- also jede Einheit). Du musst also zeigen:
  a) 1 teilt sowohl [mm] $\alpha$ [/mm] wie auch [mm] $\beta$ [/mm] in [mm] $O_k$; [/mm]
  b) wenn [mm] $\gamma \in O_k$ [/mm] ein Teiler von [mm] $\alpha$ [/mm] und [mm] $\beta$ [/mm] ist, dann ist [mm] $\gamma$ [/mm] auch ein Teiler von 1.

Teil a) sollte klar sein. Bei b) schau dir doch mal [mm] $N(\gamma)$ [/mm] an. Was gilt bzgl. [mm] $N(\alpha)$ [/mm] und [mm] $N(\beta)$? [/mm] Damit bist du sehr schnell fertig...

LG Felix


Bezug
                
Bezug
Beweis mit ggT und ZPE Ringen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 17:33 Mo 03.06.2013
Autor: Integral29

Aufgabe
> Seien [mm]\alpha, \beta[/mm] in [mm]O_k.[/mm] ggT [mm](N \alpha, N \beta)[/mm] = 1
> in [mm]\IZ.[/mm] Dann ist ggT [mm](\alpha, \beta)[/mm] ähnlich zu 1 in [mm]O_k,[/mm]
> selbst dann, wenn [mm]O_k[/mm] kein ZPE Ring ist.


Wie genau funktioniert das bei deinem Lösungsvorschlag Teil b?
b) wenn [mm] $\gamma \in O_k$ [/mm] ein Teiler von [mm] $\alpha$ [/mm] und [mm] $\beta$ [/mm] ist, dann ist [mm] $\gamma$ [/mm] auch ein Teiler von 1

Wenn ich die Norm anwende, weiß ist dass [mm] $N\gamma [/mm] | [mm] N\alpha$ [/mm] und [mm] $N\gamma [/mm] | [mm] N\beta$. [/mm] Ich möchte nun zunächst zeigen, dass die [mm] $N\gamma [/mm] | 1$ in [mm] \IZ. [/mm]
Weiter habe ich noch die Information, dass ggT [mm](N \alpha, N \beta)[/mm] = 1. Davon die Norm ist also auch 1. Aber irgendwie bekomme ich da noch keine Logik rein.



Bezug
                        
Bezug
Beweis mit ggT und ZPE Ringen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:27 Mo 03.06.2013
Autor: felixf

Moin!


> > Seien [mm]\alpha, \beta[/mm] in [mm]O_k.[/mm] ggT [mm](N \alpha, N \beta)[/mm] = 1
>  > in [mm]\IZ.[/mm] Dann ist ggT [mm](\alpha, \beta)[/mm] ähnlich zu 1 in

> [mm]O_k,[/mm]
>  > selbst dann, wenn [mm]O_k[/mm] kein ZPE Ring ist.

>  Wie genau funktioniert das bei deinem Lösungsvorschlag
> Teil b?
>   b) wenn [mm]\gamma \in O_k[/mm] ein Teiler von [mm]\alpha[/mm] und [mm]\beta[/mm]
> ist, dann ist [mm]\gamma[/mm] auch ein Teiler von 1
>  
> Wenn ich die Norm anwende, weiß ist dass [mm]N\gamma | N\alpha[/mm]
> und [mm]N\gamma | N\beta[/mm]. Ich möchte nun zunächst zeigen,
> dass die [mm]N\gamma | 1[/mm] in [mm]\IZ.[/mm]

Na, du hast Zahlen $a := [mm] N\alpha$, [/mm] $b := [mm] N\beta$ [/mm] und $c := [mm] N\gamma$ [/mm] in [mm] $\IZ$ [/mm] mit $c [mm] \mid [/mm] a$, $c [mm] \mid [/mm] b$. Dann ist doch $c$ auch ein Teiler von $ggT(a, b)$.

>  Weiter habe ich noch die Information, dass ggT [mm](N \alpha, N \beta)[/mm]
> = 1. Davon die Norm ist also auch 1. Aber irgendwie bekomme
> ich da noch keine Logik rein.

LG Felix


Bezug
                                
Bezug
Beweis mit ggT und ZPE Ringen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:39 Di 04.06.2013
Autor: Integral29

Aufgabe
$ a := [mm] N\alpha [/mm] $, $ b := [mm] N\beta [/mm] $ und $ c := [mm] N\gamma [/mm] $ in $ [mm] \IZ [/mm] $ mit $ c [mm] \mid [/mm] a $, $ c [mm] \mid [/mm] b $. Dann ist doch $ c $ auch ein Teiler von $ ggT(a, b) $.

Erstmal Danke für den Tipp :-)
Da c ein Teiler vom ggt(a,b)= 1 ist teilt c die 1 und ist deswegen eine Einheit, also [mm] $\pm [/mm] 1 $.

Kann ich nun einfach weil die $N [mm] \gamma \in \{\pm 1\}$ [/mm] ist sagen, dass [mm] $\gamma \in \{\pm 1\}$ [/mm] ist und damit [mm] $\gamma$ [/mm] teilt 1 ?

Bezug
                                        
Bezug
Beweis mit ggT und ZPE Ringen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:12 Mi 05.06.2013
Autor: felixf

Moin!

> [mm]a := N\alpha [/mm], [mm]b := N\beta[/mm] und [mm]c := N\gamma[/mm] in [mm]\IZ[/mm] mit [mm]c \mid a [/mm],
> [mm]c \mid b [/mm]. Dann ist doch [mm]c[/mm] auch ein Teiler von [mm]ggT(a, b) [/mm].
>  
> Erstmal Danke für den Tipp :-)
> Da c ein Teiler vom ggt(a,b)= 1 ist teilt c die 1 und ist
> deswegen eine Einheit, also [mm]\pm 1 [/mm].

Genau.

> Kann ich nun einfach weil die [mm]N \gamma \in \{\pm 1\}[/mm] ist
> sagen, dass [mm]\gamma \in \{\pm 1\}[/mm] ist und damit [mm]\gamma[/mm] teilt
> 1 ?

Nein, es kann sein dass [mm] $\gamma$ [/mm] etwas anderes als [mm] $\pm [/mm] 1$ ist. Es ist aber auf jeden Fall eine Einheit - und somit ein Teiler von 1.

Hattet ihr so einen Satz in der Vorlesung, der die Einheiten mit Hilfe der Norm charakterisiert?

LG Felix




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]