matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-InduktionBeweis mit vollst. Induktion
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis-Induktion" - Beweis mit vollst. Induktion
Beweis mit vollst. Induktion < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis mit vollst. Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:01 Do 20.09.2012
Autor: franzzink

Aufgabe
Es ist mittels vollständiger Induktion für n [mm] \in \IN [/mm] zu zeigen:

$ [mm] \summe_{k=0}^{n} a^k b^{n-k} [/mm] = [mm] \bruch{a^{n+1}-b^{n+1}}{a-b} [/mm] $, falls $ a [mm] \not= [/mm] b $.

Hallo,

ich habe sehr wenig Erfahrung und Übung mit Induktionsbeweisen, deshalb bitte ich jemanden mein Vorgehen zu überprüfen:

Induktionsanfang für n = 1:

linke Seite:   $ [mm] \summe_{k=0}^{n=1} a^k b^{n-k} [/mm] = [mm] a^0 b^1 [/mm] + [mm] a^1 b^0 [/mm] = b + a $

rechte Seite:   $ [mm] \bruch{a^{2}-b^{2}}{a-b} [/mm] = a + b $


Induktionsschluss von n auf (n+1):

rechte Seite:   $ [mm] \bruch{a^{n+2}-b^{n+2}}{a-b} [/mm] $

Eine Polynomdivision $ [mm] (a^{n+2}-b^{n+2}) [/mm] / (a-b) $ liefert:

$ [mm] (a^{n+2}-b^{n+2}) [/mm] / (a-b) = [mm] a^{n+1} [/mm] b + [mm] a^n [/mm] b + [mm] a^{n-1} b^{2} [/mm] + ... + [mm] a^2 b^{n-1} [/mm] + a [mm] b^{n} [/mm] + [mm] b^{n+1} [/mm] $

$ = [mm] \summe_{k=0}^{n+1} a^k b^{(n+1)-k} [/mm] $   (= linke Seite für n+1)


Kann ich das so machen? Bin ich damit fertig?

Mich stört insbesondere, dass ich quasi eine "unvollständige" Polynomdivision ausführe: Ich "sehe" das Ergebnis, aber da ja n in den Exponenten auftaucht, führe ich die Polynomdivison nicht "formal sauber" zu Ende...

Gibt es vielleicht eine elegantere Vorgehensweise?

Vielen Dank & schöne Grüße
franzzink

        
Bezug
Beweis mit vollst. Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 18:10 Do 20.09.2012
Autor: fred97


> Es ist mittels vollständiger Induktion für n [mm]\in \IN[/mm] zu
> zeigen:
>  
> [mm]\summe_{k=0}^{n} a^k b^{n-k} = \bruch{a^{n+1}-b^{n+1}}{a-b} [/mm],
> falls [mm]a \not= b [/mm].
>  Hallo,
>  
> ich habe sehr wenig Erfahrung und Übung mit
> Induktionsbeweisen, deshalb bitte ich jemanden mein
> Vorgehen zu überprüfen:
>  
> Induktionsanfang für n = 1:
>  
> linke Seite:   [mm]\summe_{k=0}^{n=1} a^k b^{n-k} = a^0 b^1 + a^1 b^0 = b + a[/mm]
>  
> rechte Seite:   [mm]\bruch{a^{2}-b^{2}}{a-b} = a + b[/mm]
>  
>
> Induktionsschluss von n auf (n+1):
>  
> rechte Seite:   [mm]\bruch{a^{n+2}-b^{n+2}}{a-b}[/mm]
>  
> Eine Polynomdivision [mm](a^{n+2}-b^{n+2}) / (a-b)[/mm] liefert:
>  
> [mm](a^{n+2}-b^{n+2}) / (a-b) = a^{n+1} b + a^n b + a^{n-1} b^{2} + ... + a^2 b^{n-1} + a b^{n} + b^{n+1}[/mm]

Wenn Du das so machst, warum schreibst Du dann nicht gleich:

" Eine Polynondivision [mm] $\bruch{a^{n+1}-b^{n+1}}{a-b}$ [/mm] liefert [mm] $\bruch{a^{n+1}-b^{n+1}}{a-b}=\summe_{k=0}^{n} a^k b^{n-k} [/mm]   $"

????

>  
> [mm]= \summe_{k=0}^{n+1} a^k b^{(n+1)-k}[/mm]   (= linke Seite für
> n+1)
>  
>
> Kann ich das so machen? Bin ich damit fertig?

Nein. Das war kein Induktionsbeweis. Die Induktionsvor. hast Du weder formuliert, noch benutzt.

FRED

>  
> Mich stört insbesondere, dass ich quasi eine
> "unvollständige" Polynomdivision ausführe: Ich "sehe" das
> Ergebnis, aber da ja n in den Exponenten auftaucht, führe
> ich die Polynomdivison nicht "formal sauber" zu Ende...
>  
> Gibt es vielleicht eine elegantere Vorgehensweise?
>  
> Vielen Dank & schöne Grüße
>  franzzink


Bezug
                
Bezug
Beweis mit vollst. Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:58 Do 20.09.2012
Autor: franzzink

Hallo FRED,

vielen Dank für die Antwort.


> > Induktionsanfang für n = 1:
>  >  
> > linke Seite:   [mm]\summe_{k=0}^{n=1} a^k b^{n-k} = a^0 b^1 + a^1 b^0 = b + a[/mm]
>  
> > rechte Seite:   [mm]\bruch{a^{2}-b^{2}}{a-b} = a + b[/mm]


Stimmt denn wenigstens der Induktionsanfang oder begehe ich schon hier einen formalen Fehler?


> > Induktionsschluss von n auf (n+1):
>  >  
> > rechte Seite:   [mm]\bruch{a^{n+2}-b^{n+2}}{a-b}[/mm]
>  >  
> > Eine Polynomdivision [mm](a^{n+2}-b^{n+2}) / (a-b)[/mm] liefert:
>  >  
> > [mm](a^{n+2}-b^{n+2}) / (a-b) = a^{n+1} b + a^n b + a^{n-1} b^{2} + ... + a^2 b^{n-1} + a b^{n} + b^{n+1}[/mm]
>  
> Wenn Du das so machst, warum schreibst Du dann nicht
> gleich:
>  
> " Eine Polynondivision [mm]\bruch{a^{n+1}-b^{n+1}}{a-b}[/mm] liefert
> [mm]\bruch{a^{n+1}-b^{n+1}}{a-b}=\summe_{k=0}^{n} a^k b^{n-k} [/mm]"
>  
> ????


Diese Überlegung habe ich ernsthaft angestellt. Scheinbar zählt sie nicht als Beweis. Ok, mein Fehler.


> Nein. Das war kein Induktionsbeweis. Die Induktionsvor.
> hast Du weder formuliert, noch benutzt.


Induktionsvoraussetzung:

Man setzt die Gültigkeit von
$ [mm] \summe_{k=0}^{n} a^k b^{n-k} [/mm] = [mm] \bruch{a^{n+1}-b^{n+1}}{a-b} [/mm] $
für ein beliebiges n [mm] \ge [/mm] 1 voraus.


Induktionsschluss von n auf n+1:

Linke Seite der Ausgangsgleichung für n+1:

$ [mm] \summe_{k=0}^{n+1} a^k b^{(n+1)-k} [/mm] = b  [mm] (\summe_{k=0}^{n} a^k b^{n-k}) [/mm] + [mm] a^{n+1} [/mm] =  $

$  = b [mm] (\bruch{a^{n+1}-b^{n+1}}{a-b}) [/mm] + [mm] a^{n+1} [/mm] = [mm] \bruch{a^{n+1}b-b^{n+2}+a^{n+2}-a^{n+1}b}{a-b} [/mm]  = $

$ = [mm] \bruch{a^{n+2}-b^{n+2}}{a-b} [/mm] $ (= rechte Seite der Ausgangsgleichung für n+1)


Ist es so besser? Geht dies jetzt als ein Beweis durch?

Grüße
franzzink


Bezug
                        
Bezug
Beweis mit vollst. Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 19:18 Do 20.09.2012
Autor: leduart

Hallo
genau das ist ein richtihrt Induktionsbeweis, du hast die Ind. vors benutzt um auf die Bejauptung zu schließen.
Gruss leduart

Bezug
                                
Bezug
Beweis mit vollst. Induktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:21 Do 20.09.2012
Autor: franzzink

Danke.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]