matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenBeweis von Kriterium
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Folgen und Reihen" - Beweis von Kriterium
Beweis von Kriterium < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis von Kriterium: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:58 Sa 22.11.2008
Autor: dominik88

Aufgabe
Ist [mm] \summe_{k=1}^{\infty}a_k [/mm] eine Reihe mit [mm] a_k [/mm] > 0 und gibt es ein c > 1 mit [mm] \bruch{a_{k+1}}{a_k} \le [/mm] 1 - [mm] \bruch{c}{k+1} [/mm] so ist [mm] \summe_{k=1}^{\infty}a_k [/mm] konvergent.

Dies ist das Kriterium nach Raabe. Ich wollte dieses Kriterium nun mal beweisen, da ich nirgends einen Beweis davon gefunden habe. Hier mein Versuch. Mich würde interessieren, ob meine Schritte so alle richtig sind oder ich einen Denkfehler drinnen habe.

[mm] \bruch{a_{k+1}}{a_k} \le [/mm] 1 - [mm] \bruch{c}{k+1} [/mm]

[mm] \gdw (c-1)a_k \le ka_k [/mm] - [mm] (k+1)a_{k+1} [/mm]     (1)

Meine Idee an dieser Stelle war nun die linke Seite der Ungleichung zu betrachten. Hier steht ja [mm] a_k [/mm] mit einem konstanten Vorfaktor. Nun muss ich meiner Meinung nur noch zeigen das [mm] \summe_{k=1}^{\infty}ka_k [/mm] - [mm] (k+1)a_{k+1} [/mm] konvergiert. Nach Majorantenkriterium würde ja anschließend auch [mm] \summe_{k=1}^{\infty}a_k [/mm] konvergieren.

Aus (1) wissen wir das [mm] ka_k [/mm] - [mm] (k+1)a_{k+1} \ge [/mm] 0 ist. Dies bedeutet, dass dann auch [mm] \summe_{k=1}^{\infty}ka_k [/mm] - [mm] (k+1)a_{k+1} \ge [/mm] 0 ist.

Betrachten wir nun [mm] \summe_{k=1}^{n}ka_k [/mm] - [mm] (k+1)a_{k+1} [/mm] gilt nach gutem hinsehen und addieren zu 0

[mm] \summe_{k=1}^{n} ka_k [/mm] - [mm] (k+1)a_l [/mm] = [mm] a_1 [/mm] - [mm] (n+1)a_{n+1} [/mm]

da [mm] (n+1)a_{n+1} \ge [/mm] 0 ist folgt [mm] a_1 [/mm] - [mm] (n+1)a_{n+1} \le a_1 [/mm]

Somit haben wir eine obere Grenze gefunden, nämlich [mm] a_1. [/mm] Außerdem haben wir scho weiter ben gesagt, dass bei der Summe immer ein Term [mm] \ge [/mm] 0 hinzuaddiert wird. Somit ist die Partialsummenfolge monoton und durch [mm] a_1 [/mm] beschränkt. Da die Folge konvergiert, konvergiert nach Definition der Reihenkonvergenz auch die Reihe selbst. Und da [mm] \summe_{k=1}^{\infty}k a_k [/mm] - [mm] (k+1)a_{k+1} [/mm] konvergiert und eine Majorante von [mm] \summe_{k=1}^{\infty}(c-1)a_k [/mm] ist, konvergiert auch diese Reihe. Und da [mm] \summe_{k=1}^{\infty} (c-1)a_k [/mm] sich nur von der konstanten (c-1) von [mm] \summe_{k=1}^{\infty}a_k [/mm] unterscheidet, konvergiert auch diese. Somit hätten wir das Kriterium von Raabe bewiesen.

Nun würde ich eure Meinung über diesen Beweis gerne erfahren. In diesem Sinne ein schönes Wochenende

        
Bezug
Beweis von Kriterium: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:16 So 23.11.2008
Autor: erisve

ich versuch mich grad an diesem beweis , kannst du vlt. nochmal erklären wie du dardrauf kommst?

> Betrachten wir nun [mm]\summe_{k=1}^{n}ka_k[/mm] - [mm](k+1)a_{k+1}[/mm] gilt
> nach gutem hinsehen und addieren zu 0
>  
> [mm]\summe_{k=1}^{n} ka_k[/mm] - [mm](k+1)a_l[/mm] = [mm]a_1[/mm] - [mm](n+1)a_{n+1}[/mm]
>  



Bezug
        
Bezug
Beweis von Kriterium: Link
Status: (Antwort) fertig Status 
Datum: 11:53 Mo 24.11.2008
Autor: Roadrunner

Hallo dominik!


In []diesem Skript ist mal ein Beweis für das Raabe-Kriterium beschrieben.


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]