Beweis von Kriterium < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Ist [mm] \summe_{k=1}^{\infty}a_k [/mm] eine Reihe mit [mm] a_k [/mm] > 0 und gibt es ein c > 1 mit [mm] \bruch{a_{k+1}}{a_k} \le [/mm] 1 - [mm] \bruch{c}{k+1} [/mm] so ist [mm] \summe_{k=1}^{\infty}a_k [/mm] konvergent. |
Dies ist das Kriterium nach Raabe. Ich wollte dieses Kriterium nun mal beweisen, da ich nirgends einen Beweis davon gefunden habe. Hier mein Versuch. Mich würde interessieren, ob meine Schritte so alle richtig sind oder ich einen Denkfehler drinnen habe.
[mm] \bruch{a_{k+1}}{a_k} \le [/mm] 1 - [mm] \bruch{c}{k+1}
[/mm]
[mm] \gdw (c-1)a_k \le ka_k [/mm] - [mm] (k+1)a_{k+1} [/mm] (1)
Meine Idee an dieser Stelle war nun die linke Seite der Ungleichung zu betrachten. Hier steht ja [mm] a_k [/mm] mit einem konstanten Vorfaktor. Nun muss ich meiner Meinung nur noch zeigen das [mm] \summe_{k=1}^{\infty}ka_k [/mm] - [mm] (k+1)a_{k+1} [/mm] konvergiert. Nach Majorantenkriterium würde ja anschließend auch [mm] \summe_{k=1}^{\infty}a_k [/mm] konvergieren.
Aus (1) wissen wir das [mm] ka_k [/mm] - [mm] (k+1)a_{k+1} \ge [/mm] 0 ist. Dies bedeutet, dass dann auch [mm] \summe_{k=1}^{\infty}ka_k [/mm] - [mm] (k+1)a_{k+1} \ge [/mm] 0 ist.
Betrachten wir nun [mm] \summe_{k=1}^{n}ka_k [/mm] - [mm] (k+1)a_{k+1} [/mm] gilt nach gutem hinsehen und addieren zu 0
[mm] \summe_{k=1}^{n} ka_k [/mm] - [mm] (k+1)a_l [/mm] = [mm] a_1 [/mm] - [mm] (n+1)a_{n+1}
[/mm]
da [mm] (n+1)a_{n+1} \ge [/mm] 0 ist folgt [mm] a_1 [/mm] - [mm] (n+1)a_{n+1} \le a_1
[/mm]
Somit haben wir eine obere Grenze gefunden, nämlich [mm] a_1. [/mm] Außerdem haben wir scho weiter ben gesagt, dass bei der Summe immer ein Term [mm] \ge [/mm] 0 hinzuaddiert wird. Somit ist die Partialsummenfolge monoton und durch [mm] a_1 [/mm] beschränkt. Da die Folge konvergiert, konvergiert nach Definition der Reihenkonvergenz auch die Reihe selbst. Und da [mm] \summe_{k=1}^{\infty}k a_k [/mm] - [mm] (k+1)a_{k+1} [/mm] konvergiert und eine Majorante von [mm] \summe_{k=1}^{\infty}(c-1)a_k [/mm] ist, konvergiert auch diese Reihe. Und da [mm] \summe_{k=1}^{\infty} (c-1)a_k [/mm] sich nur von der konstanten (c-1) von [mm] \summe_{k=1}^{\infty}a_k [/mm] unterscheidet, konvergiert auch diese. Somit hätten wir das Kriterium von Raabe bewiesen.
Nun würde ich eure Meinung über diesen Beweis gerne erfahren. In diesem Sinne ein schönes Wochenende
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 14:16 So 23.11.2008 | Autor: | erisve |
ich versuch mich grad an diesem beweis , kannst du vlt. nochmal erklären wie du dardrauf kommst?
> Betrachten wir nun [mm]\summe_{k=1}^{n}ka_k[/mm] - [mm](k+1)a_{k+1}[/mm] gilt
> nach gutem hinsehen und addieren zu 0
>
> [mm]\summe_{k=1}^{n} ka_k[/mm] - [mm](k+1)a_l[/mm] = [mm]a_1[/mm] - [mm](n+1)a_{n+1}[/mm]
>
|
|
|
|
|
Hallo dominik!
In diesem Skript ist mal ein Beweis für das Raabe-Kriterium beschrieben.
Gruß vom
Roadrunner
|
|
|
|