matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieBeweis zu Kongruenz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Zahlentheorie" - Beweis zu Kongruenz
Beweis zu Kongruenz < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis zu Kongruenz: Idee
Status: (Frage) beantwortet Status 
Datum: 18:18 Di 17.04.2012
Autor: teo

Aufgabe
Sei p eine ungerade Primzahl. Zeigen Sie, dass

[mm] 2^{2}*4^{2}***(p-3)^{2}*(p-1)^{2} \equiv (-1)^{\bruch{1}{2}(p+1)} [/mm] (mod p).

(Ohne Beweis darf der Wilson'sche Satz verwendet werden: Eine natürliche Zahl n [mm] \ge [/mm] 2 ist genau dann eine Primzahl, wenn (n-1)! + 1 durch n teilbar ist.

Hallo,

ich habe mehrere Aufgaben diesen Typs und weiß nicht wie ich an die Aufgabe ran gehen soll.

Ich hoffe ihr könnt mir auf die Sprünge helfen.

Vielen Dank

        
Bezug
Beweis zu Kongruenz: Antwort
Status: (Antwort) fertig Status 
Datum: 21:39 Di 17.04.2012
Autor: felixf

Moin!

> Sei p eine ungerade Primzahl. Zeigen Sie, dass
>  
> [mm]2^{2}*4^{2}***(p-3)^{2}*(p-1)^{2} \equiv (-1)^{\bruch{1}{2}(p+1)}[/mm]
> (mod p).
>  
> (Ohne Beweis darf der Wilson'sche Satz verwendet werden:
> Eine natürliche Zahl n [mm]\ge[/mm] 2 ist genau dann eine Primzahl,
> wenn (n-1)! + 1 durch n teilbar ist.
>  Hallo,
>  
> ich habe mehrere Aufgaben diesen Typs und weiß nicht wie
> ich an die Aufgabe ran gehen soll.
>
> Ich hoffe ihr könnt mir auf die Sprünge helfen.

Es gilt [mm] $2^2 \equiv [/mm] (-1) [mm] \cdot [/mm] 2 [mm] \cdot [/mm] (p - 2) [mm] \pmod{p}$. [/mm]

Damit kannst du das Produkt auf der linken Seite als $(p - 1)!$ mal eine passende Potenz von $(-1)$ schreiben.

LG Felix


Bezug
                
Bezug
Beweis zu Kongruenz: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 20:20 Mi 18.04.2012
Autor: teo


> Es gilt [mm]2^2 \equiv (-1) \cdot 2 \cdot (p - 2) \pmod{p}[/mm].

Wie bekommt man das? Den Schritt verstehe ich leider nicht.

> Damit kannst du das Produkt auf der linken Seite als [mm](p - 1)![/mm]
> mal eine passende Potenz von [mm](-1)[/mm] schreiben.

Vlt bekomm ich dann das auch hin... Danke!

Gruß

Bezug
                        
Bezug
Beweis zu Kongruenz: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:23 Do 19.04.2012
Autor: teo

AH! Jetzt hats geschnaggelt..

Es gilt allgemein [mm] k^{2} \equiv [/mm] (-1)k(p-k) (mod p) also erhält man eben:
  

> > Damit kannst du das Produkt auf der linken Seite als [mm](p - 1)![/mm]
> > mal eine passende Potenz von [mm](-1)[/mm] schreiben.

[mm] 2^{2} [/mm] usw [mm] \equiv (-1)^{\bruch{p-1}{2}}(p-1)! [/mm] (mod p)

und dann folgt mit dem obigen Satz die Behauptung.  


Vielen Dank  

Grüße

Bezug
                                
Bezug
Beweis zu Kongruenz: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Sa 21.04.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
                                
Bezug
Beweis zu Kongruenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:08 Mi 25.04.2012
Autor: felixf

Moin!

> AH! Jetzt hats geschnaggelt..
>  
> Es gilt allgemein [mm]k^{2} \equiv[/mm] (-1)k(p-k) (mod p) also
> erhält man eben:
>    
> > > Damit kannst du das Produkt auf der linken Seite als [mm](p - 1)![/mm]
> > > mal eine passende Potenz von [mm](-1)[/mm] schreiben.
>  
> [mm]2^{2}[/mm] usw [mm]\equiv (-1)^{\bruch{p-1}{2}}(p-1)![/mm] (mod p)
>
> und dann folgt mit dem obigen Satz die Behauptung.  

Genau.

(Und sorry das ich erst jetzt antworte... War zuviel los in der letzten Zeit, hab die Frage dann ganz aus den Augen verloren...)

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]