matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeBeweis zu Linearkombinationen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra - Moduln und Vektorräume" - Beweis zu Linearkombinationen
Beweis zu Linearkombinationen < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis zu Linearkombinationen: Tipp
Status: (Frage) beantwortet Status 
Datum: 16:14 Do 26.04.2007
Autor: Gordaron

Aufgabe
Seien Vektoren [mm] v_1 ,...,v_n [/mm] eines Vektorraumes gegeben und seinen [mm] w_1 ,...,w_n [/mm] jeweils Linearkombinationen aus den [mm] v_i. [/mm] Man zeige, dass aus der linearen Unabhängigkeit der [mm] w_i [/mm] , i=1,...,m auch die der [mm] v_i [/mm] , i=1,...,m folgt.

Hallo!

Ich bin bei der Aufgabe immerhin schon soweit, dass es wohl einfacher ist, die Negation zu beweisen. Also nehmen wir an, dass die [mm] v_i [/mm] linear abhängig sind, und wir müssen zeigen, dass die [mm] w_i [/mm] dann auch linear abhängigk sein müssen.
Nun gilt o.B.d.A [mm] v_1 =\lambda_2 v_2 +\lambda_3 v_3 +...+\lambda_n v_n [/mm] und ein [mm] \lambda [/mm] ist ungleich 0.
An der Stelle komme ich irgendwie nicht weiter. Wenn [mm] w_j [/mm] Linearkombination über die [mm] v_i [/mm] ist, kommt dieses [mm] v_1 [/mm] ja auch wieder in [mm] w_j [/mm] vor, aber doch nicht in jeder Linearkombination der [mm] v_i. [/mm] Irgendwo muss da bei mir ein Denkfehler sein...
Wäre sehr dankbar über einen kleinen Tipp!

mfg Gordaron

P.S.: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Beweis zu Linearkombinationen: Tip
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:04 Do 26.04.2007
Autor: steffenhst

Hallo,

ich würde folgendes probieren: Du weißt das die Vektoren [mm] w_{1} [/mm] bis [mm] w_{n} [/mm] linear unabhängig sind, d.h. es gilt
0 = [mm] \summe_{i=1}^{n} \lambda_{i}w_{i}, [/mm] wobei die [mm] \lambda_{i} [/mm] = 0.
Mit der Vorraussetzung gilt aber auch, dass [mm] w_{i} [/mm] durch die Vektoren [mm] v_{1} [/mm] bis [mm] v_{n} [/mm] dargestellt werden können, d.h. also [mm] w_{i} [/mm] = [mm] \summe_{i=1}^{n} a_{i}v_{i}. [/mm] Setz doch diesen Term mal oben ein, was kann man denn daraus schlussfolgern?

Grüße, Steffen





Bezug
                
Bezug
Beweis zu Linearkombinationen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 20:04 Do 26.04.2007
Autor: Gordaron

Hmm, also mal angenommen, die [mm] $v_i$ [/mm] wären linear abhängig. Dann existiert ein [mm] $a_i\neq [/mm] 0$, sodass gilt [mm] $w_j =0=\sum\limits_1^n a_i v_i$. [/mm] Dann kann man aber auch für das zu genau diesem [mm] $w_j$ [/mm] gehören [mm] $\lambda_j$ [/mm] einen beliebigen Wert [mm] $\neq [/mm] 0$ einsetzen, sodass die [mm] $w_i$ [/mm] nicht mehr linear unabhängig wären.
Mit Sicherheit ist das jetzt total schwamming formuliert. Aber geht die Idee schonmal in die richtige Richtung?

Danke und mfg Flo

Bezug
                        
Bezug
Beweis zu Linearkombinationen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:10 Do 26.04.2007
Autor: leduart

Hallo
du machst den Ansatz mit dem llin. unabh. immer falsch.
nicht eine Vektor durch die anderen darstellen ist die Def. sondern
[mm] \summe_{i=1}^{n}a_iw_i=0 [/mm] nur für alle [mm] a_i=0 [/mm]
angenommen es gäbe [mm] b_i [/mm] nicht alle 0 so dass [mm] \summe_{i=1}^{n}b_iv_i=0 [/mm] dann setz für [mm] v_i [/mm] ihre Darstellung durch [mm] w_i [/mm] ein, dann steht da ne Summe über [mm] c_i w_i, [/mm] und nicht alle faktoren sind 0.

Gruss leduart

Bezug
        
Bezug
Beweis zu Linearkombinationen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:31 Do 26.04.2007
Autor: SEcki


> Seien Vektoren [mm]v_1 ,...,v_n[/mm] eines Vektorraumes gegeben und
> seinen [mm]w_1 ,...,w_n[/mm] jeweils Linearkombinationen aus den
> [mm]v_i.[/mm] Man zeige, dass aus der linearen Unabhängigkeit der
> [mm]w_i[/mm] , i=1,...,m auch die der [mm]v_i[/mm] , i=1,...,m folgt.

Hm, ich weiss nicht was du alles kennst, aber von dem Rau, der von den [m]v_i[/m] aufgesapnnt wird, gibt es eine lineare Abbildung in den Raum, der von den [m]w_i[/m] aufgespannt wird - und zwar ist diese surjektiv. Dimensionssatz, fertig.

SEcki

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]