matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesBeweis zu a^2+4a+5>0
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis-Sonstiges" - Beweis zu a^2+4a+5>0
Beweis zu a^2+4a+5>0 < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis zu a^2+4a+5>0: Korrektur bei a) & Tipp bei b)
Status: (Frage) beantwortet Status 
Datum: 21:31 So 13.05.2007
Autor: lubalu

Aufgabe
Seien [mm] a,b,c\in\IR [/mm]
a) [mm] a^2+4*a+5>0 [/mm]
b) [mm] a^2+b^2+c^2+1/a^2+1/b^2+1/c^2\ge6 [/mm]

Hallo.

Also bei a) hab ich folgendes. Bitte um Korrektur,falls ich falsch liege!
[mm] a^2+4*a+5=a^2+4*a+4-4+5=(a+2)^2+5>0, [/mm] weil [mm] (a+2)^2>0 [/mm] und 5>0. Fertig!:-)

Aber bei b) hab ich meine Probleme. Ich hab jetzt mal die [mm] a^2,b^2 [/mm] und [mm] c^2 [/mm] erweitert und alles auf den Hauptnenner [mm] a^2*b^2*c^2 [/mm] gebracht. Dann erhalte ich folgenden Term:
[mm] (a^4*b^2*c^2+b^2*c^2+a^2*b^4*c^2+a^2*c^2+a^2*b^2*c^4+a^2*b^2)/(a^2*b^2*c^2) [/mm]
Soweit so gut, aber wie zeig ich jetzt,dass des [mm] \ge6 [/mm] ist? Der Nenner ist ja >0, aber es müssten ja dann alle 6 Summanden im Zähler [mm] \ge1 [/mm] sein,dass der ganze Term [mm] \ge6 [/mm] ist,oder?! Oder lieg ich da ganz falsch?!

Vielen Dank schon mal!

Grüße, Marina




Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Beweis zu a^2+4a+5>0: Rückfrage
Status: (Antwort) fertig Status 
Datum: 21:41 So 13.05.2007
Autor: Loddar

Hallo lubalu!


Aufgabe a.) hast Du richtig gelöst. [ok]


Meinst Du bei Aufgabe b.) folgenden Ausdruck?

[mm] $a^2+b^2+c^2+\bruch{1}{a^2}+\bruch{1}{b^2}+\bruch{1}{c^2} [/mm] \ [mm] \ge [/mm] \ 6$


Dann verstehe ich nicht, wo die Terme wie z.B. [mm] $+b^2*c^2$ [/mm] herkommen beim erweitern.

Bei meiner Variante einfach mal die Ungleichung mit [mm] $a^2*b^2*c^2$ [/mm] multiplizieren und anschließend [mm] $-6*a^2*b^2*c^2$ [/mm] rechnen und durch Ausklammern auf insegsamt 3 binomische Formeln "verteilen" ...


Gruß
Loddar


Bezug
                
Bezug
Beweis zu a^2+4a+5>0: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:02 So 13.05.2007
Autor: Steffi21

Hallo,

gehst du über die quadratische Ergänzung heißt es:

[mm] a^{2}+4a+5=(a+2)^{2}+ [/mm] 1

Steffi

Bezug
                        
Bezug
Beweis zu a^2+4a+5>0: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:07 So 13.05.2007
Autor: lubalu

Hi Steffi.

Ja,stimmt...Hab mich bloß vertippt, da steht eine Einser und keine 5...Habs aber in meinem ÜB schon richtig geschrieben. Aber danke trotzdem!

Grüße Marina

Bezug
        
Bezug
Beweis zu a^2+4a+5>0: Antwort
Status: (Antwort) fertig Status 
Datum: 21:49 So 13.05.2007
Autor: leduart

Hallo
es ist viel leichter zu zeigen dass für alle reellen zahlen a gilt [mm] a^2+1/a^2\ge [/mm] 2 wobei du [mm] a^2>1 [/mm] annehmen kannst da sonst [mm] 1/a^2>1. [/mm]
Gruss leduart

Bezug
                
Bezug
Beweis zu a^2+4a+5>0: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 21:55 So 13.05.2007
Autor: lubalu

Ah ja,ok. Vielen Dank euch beiden! Dann kann ich das auch für [mm] b^2 [/mm] und [mm] c^2 [/mm] behaupten und dann stimmt das ja, dass diese 3 Summanden addiert dann [mm] \ge6 [/mm] ergeben, oder?!

Bezug
                        
Bezug
Beweis zu a^2+4a+5>0: Genau!
Status: (Antwort) fertig Status 
Datum: 21:57 So 13.05.2007
Autor: Loddar

Hallo lubalu!


[daumenhoch] !


Gruß
Loddar


Bezug
                                
Bezug
Beweis zu a^2+4a+5>0: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:00 So 13.05.2007
Autor: lubalu

Ok,supi... Vielen Dank.
Dann muss ich wohl eh nicht erweitern und so doof rumrechnen, wenns auch einfacher geht...:-)

Grüße,Marina

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]