matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieBeweis zur Teilerfremdheit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Zahlentheorie" - Beweis zur Teilerfremdheit
Beweis zur Teilerfremdheit < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis zur Teilerfremdheit: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 15:42 Di 19.10.2010
Autor: lenzlein

Aufgabe
Für n [mm] \in \IN [/mm] (mit der 0) sei [mm] F_{n} [/mm] := [mm] 2^{2^{n}} [/mm] +1.
a) Zeige durch vollständige Induktion, dass für n [mm] \in \IN [/mm] gilt
  [mm] F_{0} [/mm] * [mm] F_{1} [/mm] *...* [mm] F_{n} [/mm] = [mm] F_{n+1} [/mm] - 2.
b) Zeige , dass [mm] F_{m} [/mm] und [mm] F_{n} [/mm] für m [mm] \not= [/mm] n teilerfremd sind.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo zusammen,

Also die a) habe ich selber gelöst und sie hat relativ schnell funktioniert. Mein Problem ist die b). Ich habe hin und her überlegt und weiß einfach nicht, wie ich es anfangen soll. Soll ich einen indirekten Beweis machen (also zeigen, dass wenn m = n wäre, dann die beiden nicht teilerfremd sind???? Und wenn ja ,wie???) oder einen direkten Beweis?
Teilerfremdheit bedeutet ja auch nichts anderes als dass der ggT=1 ist. Aber wie zeige ich das bei unterschiedlichen Variablen? Ich weiß nicht weiter, bitte helft mir!
Danke im Voraus!
lenzlein

        
Bezug
Beweis zur Teilerfremdheit: Antwort
Status: (Antwort) fertig Status 
Datum: 15:55 Di 19.10.2010
Autor: statler


> Für n [mm]\in \IN[/mm] (mit der 0) sei [mm]F_{n}[/mm] := [mm]2^{2^{n}}[/mm] +1.
>  a) Zeige durch vollständige Induktion, dass für n [mm]\in \IN[/mm]
> gilt
>    [mm]F_{0}[/mm] * [mm]F_{1}[/mm] *...* [mm]F_{n}[/mm] = [mm]F_{n+1}[/mm] - 2.
>  b) Zeige , dass [mm]F_{m}[/mm] und [mm]F_{n}[/mm] für m [mm]\not=[/mm] n teilerfremd
> sind.

Hi, [willkommenmr]

> Also die a) habe ich selber gelöst und sie hat relativ
> schnell funktioniert. Mein Problem ist die b). Ich habe hin
> und her überlegt und weiß einfach nicht, wie ich es
> anfangen soll. Soll ich einen indirekten Beweis machen
> (also zeigen, dass wenn m = n wäre, dann die beiden nicht
> teilerfremd sind???? Und wenn ja ,wie???) oder einen
> direkten Beweis?

Bei m = n sind sie ja gleich, dann sind sie natürlich nicht teilerfremd. Aber daraus folgt doch nicht die Beh.

>  Teilerfremdheit bedeutet ja auch nichts anderes als dass
> der ggT=1 ist. Aber wie zeige ich das bei unterschiedlichen
> Variablen? Ich weiß nicht weiter, bitte helft mir!

Weißt du etwas vom Euklid. Algorithmus? Wie man den ggT als Linearkombination darstellt?

Wenn z. B. oBdA m < n ist, dann steht in a) eine Gl. 2 = [mm] F_n [/mm] - [mm] aF_m. [/mm] Also ist der ggT 1 oder 2. Warum nicht 2?

Gruß aus HH-Harburg
Dieter

Bezug
                
Bezug
Beweis zur Teilerfremdheit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:23 Mi 20.10.2010
Autor: lenzlein

wow ok auf die a) hätte ich mich jetzt gar nicht mehr bezogen! wir haben einen algorithmus angewendet um den gemeinsamen teiler herauszufinden (a=qm+r wobei q und r ganze Zahlen sind) aber wenn ich den versuche komme ich iwie nich weiter.

also soll ich deiner meinung nach eine fallunterscheidung machen? oder ist es mit der annahme o.B.d.A. m < n schon bewiesen. die formel leuchtet mir ein...aber warum jetzt auch 2 einn ggT sein könnte nicht!

vielen dank für deine schnelle antwort!

Bezug
                        
Bezug
Beweis zur Teilerfremdheit: Antwort
Status: (Antwort) fertig Status 
Datum: 13:36 Mi 20.10.2010
Autor: statler

Mahlzeit!

> also soll ich deiner meinung nach eine fallunterscheidung
> machen? oder ist es mit der annahme o.B.d.A. m < n schon
> bewiesen. die formel leuchtet mir ein...aber warum jetzt
> auch 2 einn ggT sein könnte nicht!

Wenn n und m verschieden sein sollen, dann ist eins größer und das andere kleiner, wir nehmen an, daß m die kleinere Zahl ist, sonst taufen wir die Zahlen um, also ist das keine Fallunterscheidung, sondern faßt beide möglichen Fälle in einem zusammen.

Nun steht da eine Formel (2 = [mm] $F_n$ [/mm] - [mm] a$F_m$), [/mm] die dir einleuchtet, das ist schön. Jeder gemeinsame Teiler von [mm] F_n [/mm] und [mm] F_m [/mm] teilt die rechte Seite, also auch die linke Seite. Die ist 2, und 2 hat nur die beiden positiven Teiler 1 und 2. Aber die [mm] $F_i$'s [/mm] sind alles ungerade Zahlen, also nicht durch 2 teilbar, also ist 2 kein gemeinsamer Teiler und damit erst recht nicht der größte gemeinsame Teiler.

Gruß aus HH-Harburg
Dieter

>  
> vielen dank für deine schnelle antwort!


Bezug
                                
Bezug
Beweis zur Teilerfremdheit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:49 Mi 20.10.2010
Autor: lenzlein

dankeschön!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]