matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare GleichungssystemeBeweise
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Gleichungssysteme" - Beweise
Beweise < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweise: Lösung
Status: (Frage) beantwortet Status 
Datum: 14:25 Sa 24.04.2010
Autor: Yuppie

Aufgabe 1
Seien m, n  [mm] \in [/mm] beliebig, [mm] a_{ij} [/mm] , [mm] b_i \in [/mm] R beliebig mit i [mm] \in [/mm] (1; ... ; n), j [mm] \in [/mm] (1; .... ;m) und durch
[mm] a_{11} x_1 [/mm] + [mm] a_{12} x_2 [/mm] + ..... + [mm] a_{1n} x_n [/mm] = 0
[mm] a_{21} x_1 [/mm] + [mm] a_{22} x_2 [/mm] + ..... + [mm] a_{2n} x_n [/mm] = 0
...  
...
...
...
[mm] a_{m1} x_1 [/mm] + [mm] a_{m2} x_2 [/mm] + ...... + [mm] a_{mn} x_n [/mm] = 0
ein homogenes lineares Gleichungsystem mit m Zeilen, n Variablen bzw. Spalten und
der Lösungsmenge L gegeben. Beweisen Sie:
(a) (0; .....; 0) [mm] \in [/mm] L


Aufgabe 2
b) [mm] (c_{1}; [/mm] .....; [mm] c_{n}) [/mm] + [mm] (d_{1}; [/mm] ....; [mm] d_{n}) [/mm] = [mm] (c_{1} [/mm] + [mm] d_{1}; [/mm] .... ; [mm] c_{n} [/mm] + [mm] d_{n}) \in [/mm] L für alle [mm] \vec{c} [/mm] , [mm] \vec{d} \in [/mm] L

Aufgabe 3
(c) Begründen Sie (ohne Beweis), dass durch Aufgabenteil b überhaupt erst eine Addition auf L gerechtfertigt ist.

Hallo
wiedereinmal das alt bekannte Problem.
Mein Problem ist wie auch letzte Woche diese scheiß Beweise. Ich verstehe da sogut wie gar nichts von. Also es wäre echt nett wenn ihr da mir mal eine Musterlösung aufschreiben könntet nicht abgekürzt. Es geht mir einfach da drum das mal einmal nachvollziehen zu können und dann auf die anderen Aufgabenteile die oben nicht aufgeführt sind anwenden zu können. Also :) ich hoffe mir kann noch jemand helfen wenn mir noch zu helfen ist ;)

        
Bezug
Beweise: Antwort
Status: (Antwort) fertig Status 
Datum: 14:46 Sa 24.04.2010
Autor: leduart

Hallo
"scheiß Beweise" mit der einstellung solltest du vielleicht lieber Parapsychologie oder Astrologie (wirklich mit l ) studieren.
vereinfach das mal zu kleinen Zahlen als etwa n=3, m=2 oder n=4, m=3
und wenn dus da kannst ist die Verallgemeinerung gaz leicht.
Aber ohne dass man was probiert, und mit den gegebenen dingen "rumspielt" kommt man natürlich auf keine Idee.
Da "Beweise" ja schon in vorlesungen und büchern dir vorgeführt wurden, hilft es nix wenn wir ir nach all denen den (n+1)ten vorführen, denn nach Induktionsschluss ; aus 1 nichts  gelernt,  n nix gelernt folgt  aus n+1 nix gelernt.
man lern wirklich nur durch selbermachen oder wenigstens probieren.
also hab mut und leg los. Schlimmstenfalls kapierst du dann, nachdem du ne Weile selbst rumprobiert hast Erklärungen viel besser.
Grus leduart

Bezug
                
Bezug
Beweise: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:38 Sa 24.04.2010
Autor: Yuppie

naja so unzählige bücher habe ich nicht und auch erst ein paar vorlesungen ;) daher wäre eine lösung mal gut weil woher lernen wenn man kein beispiel hat

Bezug
                        
Bezug
Beweise: Antwort
Status: (Antwort) fertig Status 
Datum: 21:25 Sa 24.04.2010
Autor: leduart

Hallo
1 bis 2 Bücher  und 2 Vorlesungen reichen um viele Beweise zu sehen.
Also nochmal: mach einen versuch in niedrigen Dimensionen.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]