matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenBeweise zu Inversen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Matrizen" - Beweise zu Inversen
Beweise zu Inversen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweise zu Inversen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:09 Do 09.01.2014
Autor: Mathics

Aufgabe
Beweisen Sie folgende Gleichungen.

a) (A^-1)^-1 = A
b) [mm] (A^T)^-1 [/mm] = [mm] (A^-1)^T [/mm]
c) Sind B und C inverse Matrizen zu A, so folgt B=C

Hallo,

ich habe mich mal an die Beweise versucht und bisschen was zusammengebracht:

a) A*A^-1 = A^-1 * A = E --> Damit sind sowohl A als auch A^-1 invertierbar, sodass (A^-1)^-1 = A  (hier bin ich mir sehr unsicher?)

b) A^-1*A = E
   [mm] (A^-1*A)^T [/mm] = [mm] E^T [/mm]
   [mm] A^T [/mm] * [mm] (A^-1)^T [/mm] = E
   [mm] (A^T)^-1 [/mm] * [mm] A^T [/mm] * [mm] (A^-1)^T [/mm] = [mm] (A^T)^-1 [/mm] * E
   [mm] (A^-1)^T [/mm] = [mm] (A^T)^-1 [/mm]

(hier hab ich einen Tipp von einem Kumpel bekommen wie man anfängt, gibt es Tricks, um von selbst auf diese Ansätze zu kommen?)

c) AB = BA = E = AC  = CA --> C = CE = C(AB) = (CA)B = EB = B


Mein Problem ist es, den richtigen Ansatz zu finden und da wollte ich fragen, ob es da hilfreiche Tipps und Tricks zu gibt?




LG

        
Bezug
Beweise zu Inversen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:21 Do 09.01.2014
Autor: fred97


> Beweisen Sie folgende Gleichungen.
>  
> a) (A^-1)^-1 = A
>  b) [mm](A^T)^-1[/mm] = [mm](A^-1)^T[/mm]
>  c) Sind B und C inverse Matrizen zu A, so folgt B=C
>  Hallo,
>  
> ich habe mich mal an die Beweise versucht und bisschen was
> zusammengebracht:
>  
> a) A*A^-1 = A^-1 * A = E --> Damit sind sowohl A als auch
> A^-1 invertierbar,


In diesem Aufgabenteil ist doch A als invertierbar vorausgesetzt (steht zwar nich oben, aber ohne diese Vor. ist die Aufgabe sinnlos)

> sodass (A^-1)^-1 = A  (hier bin ich mir
> sehr unsicher?)

Zurecht, denn gezeigt hast Du nix !

Setze [mm] B:=(A^{-1})^{-1}. [/mm] Zu zeigen ist B=A.

Dazu berechne mal [mm] B*A^{-1} [/mm] und zeige dann:

   B= [mm] B*A^{-1}A=A. [/mm]


>  
> b) A^-1*A = E
>     [mm](A^-1*A)^T[/mm] = [mm]E^T[/mm]
>     [mm]A^T[/mm] * [mm](A^-1)^T[/mm] = E



Hier bist Du doch schon fertig !

Aus [mm] A^T*(A^{-1})^T=E [/mm] folgt doch das Gewünschte !


>     [mm](A^T)^-1[/mm] * [mm]A^T[/mm] * [mm](A^-1)^T[/mm] = [mm](A^T)^-1[/mm] * E
>     [mm](A^-1)^T[/mm] = [mm](A^T)^-1[/mm]
>  
> (hier hab ich einen Tipp von einem Kumpel bekommen wie man
> anfängt, gibt es Tricks, um von selbst auf diese Ansätze
> zu kommen?)
>  
> c) AB = BA = E = AC  = CA --> C = CE = C(AB) = (CA)B = EB =
> B

Ja, so kann man das machen.


>  
>
> Mein Problem ist es, den richtigen Ansatz zu finden und da
> wollte ich fragen, ob es da hilfreiche Tipps und Tricks zu
> gibt?

Ein Kochrezept gibt es nicht.

FRED

>  
>
>
>
> LG


Bezug
                
Bezug
Beweise zu Inversen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:39 Do 09.01.2014
Autor: Mathics


> Zurecht, denn gezeigt hast Du nix !
>  
> Setze [mm]B:=(A^{-1})^{-1}.[/mm] Zu zeigen ist B=A.
>  
> Dazu berechne mal [mm]B*A^{-1}[/mm] und zeige dann:
>  
> B= [mm]B*A^{-1}A=A.[/mm]

Das wäre dann B = [mm] (A^{{-1}})^{-1} *A^{-1} [/mm] * A = E*A = A

Wieso kann man denn B = (A^-1)^-1 setzen?



Kann man c) noch anders beweisen?

Bezug
                        
Bezug
Beweise zu Inversen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:47 Do 09.01.2014
Autor: fred97


> > Zurecht, denn gezeigt hast Du nix !
>  >  
> > Setze [mm]B:=(A^{-1})^{-1}.[/mm] Zu zeigen ist B=A.
>  >  
> > Dazu berechne mal [mm]B*A^{-1}[/mm] und zeige dann:
>  >  
> > B= [mm]B*A^{-1}A=A.[/mm]
>  
> Das wäre dann B = [mm](A^{{-1}})^{-1} *A^{-1}[/mm] * A = E*A = A

Ja


>  
> Wieso kann man denn B = (A^-1)^-1 setzen?

Warum nicht ? Ich hab nur der Übersicht wegen eine Abkürzung eingeführt.

Wenn Du willst kannst Du auch setzen:

             $ PAULHEINRICHVONUNDZUGRAFHUBERAUFHOHENFELZEN:= [mm] (A^{-1})^{-1}$. [/mm]

Das kannst Du machen, nur ist das dann keine Abkürzung mehr für Schreibfaule und die Übersicht leidet gewaltig.

>  
>
> Kann man c) noch anders beweisen?

Ja: Aus AB=E=AC folgt durch Multiplikation von links mit [mm] A^{-1}: [/mm]

   B= [mm] A^{-1}=C. [/mm]

FRED


Bezug
                                
Bezug
Beweise zu Inversen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:18 Do 09.01.2014
Autor: Mathics


> > Setze [mm]B:=(A^{-1})^{-1}.[/mm] Zu zeigen ist B=A.
>  >  
> > Dazu berechne mal [mm]B*A^{-1}[/mm] und zeige dann:
>  >  
> > B= [mm]B*A^{-1}A=A.[/mm]
>  
> Das wäre dann B = [mm](A^{{-1}})^{-1} *A^{-1}[/mm] * A = E*A = A


Okey, das mann [mm] B:=(A^{-1})^{-1} [/mm] definieren kann, ist mir klar geworden.

Wie kommt man aber auf B= [mm]B*A^{-1}A=A.[/mm]

Ich versuch mir das grad irgendwie in der Form "Wenn ich links was ändere, muss ich auch rechts dasselbe ändern" vorzustellen aber blick da nicht so ganz durch.

Bezug
                                        
Bezug
Beweise zu Inversen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:29 Do 09.01.2014
Autor: fred97


> > > Setze [mm]B:=(A^{-1})^{-1}.[/mm] Zu zeigen ist B=A.
> >  >  

> > > Dazu berechne mal [mm]B*A^{-1}[/mm] und zeige dann:
> >  >  

> > > B= [mm]B*A^{-1}A=A.[/mm]
> >  

> > Das wäre dann B = [mm](A^{{-1}})^{-1} *A^{-1}[/mm] * A = E*A = A
>
>
> Okey, das mann [mm]B:=(A^{-1})^{-1}[/mm] definieren kann, ist mir
> klar geworden.
>
> Wie kommt man aber auf B= [mm]B*A^{-1}A=A.[/mm]
>
> Ich versuch mir das grad irgendwie in der Form "Wenn ich
> links was ändere, muss ich auch rechts dasselbe ändern"
> vorzustellen aber blick da nicht so ganz durch.


Ist [mm]B:=(A^{-1})^{-1}[/mm], so ist doch B die zu [mm] A^{-1} [/mm] inverse Matrix. Also ist

    [mm] E=B*A^{-1}. [/mm]

Dann folgt:

    [mm] $A=E*A=(B*A^{-1})*A=B*(A^{-1}*A)=B*E=B$ [/mm]

FRED

Bezug
                                                
Bezug
Beweise zu Inversen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 11:41 Do 09.01.2014
Autor: Mathics

Aaah okey, jetzt verstehe ich. Echt vielen vielen Dank!! :)

Hast du vielleicht noch weitere Gleichungen mit Determinanten und Inversen, die ein Erstsemester-Student in Lineare Algebra 1 beweisen können sollte?
Ich denke, ich benötige vor der Klausur noch etwas Training darin und würde sehr gern den Tag mit dem Beweisen von solchen Gleichungen verbringen.


LG

Bezug
                                                        
Bezug
Beweise zu Inversen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:20 Sa 11.01.2014
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Beweise zu Inversen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:44 Do 09.01.2014
Autor: Richie1401

Hi,

> Mein Problem ist es, den richtigen Ansatz zu finden und da
> wollte ich fragen, ob es da hilfreiche Tipps und Tricks zu
> gibt?

Fred schrieb dass es keine Kochrezepte gibt. Damit hat er Recht. Dennoch gibt es so ein paar kleine Sachen, die man manchmal anwenden kann.

Bspw. hattest du zu zeigen: [mm] (A^{-1})^{-1}=A [/mm]
Vielleicht erinnert dich das an Eigenschaften von Gruppen? Da ist meist auch zu zeigen: G sei Gruppe und [mm] a\in{G}. [/mm] Dann gilt: [mm] (a^{-1})^{-1}=a. [/mm]

Naja, nun ist das nicht verwunderlich. Denn es gibt ja die allgemeine lineare Gruppe ("Matrizengruppe").
Wenn du allgemein den Beweis für die Gruppe schon einmal gemacht hast, dann ist es nicht schwer das ganze noch einmal auf eine spezielle Gruppe anzuwenden.


>  
>
>
>
> LG


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]