matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysisBeweisen von supA=inf(A-1)-1
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Funktionalanalysis" - Beweisen von supA=inf(A-1)-1
Beweisen von supA=inf(A-1)-1 < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweisen von supA=inf(A-1)-1: Tipp
Status: (Frage) beantwortet Status 
Datum: 12:16 So 04.11.2012
Autor: emilyerdbeer

Aufgabe
Sei A eine beschränkte Teilmenge von R+={xeR|x>0}
Zeigen sie supA= (inf [mm] A^{-1} )^{-1} [/mm]


ICh komme überhaupt nicht drauf, wie man diese Aufgabe lösen kann. DIe Definition von Supremum und Infimum kenne ich, habe jedoch keinen Lösungsansatz
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Beweisen von supA=inf(A-1)-1: Antwort
Status: (Antwort) fertig Status 
Datum: 12:36 So 04.11.2012
Autor: angela.h.b.


> Sei a eine beschränkte Teilmenge von R+={xeR|x>0}
>  Zeigen sie supA0 (inA hoch -1)hoch -1
>  ICh komme überhaupt nicht drauf, wie man diese Aufgabe
> lösen kann.

Hallo,

[willkommenmr].

Ich kann leider nicht entscheiden, ob ich drauf kommen, denn ich kann mir aufgrund der Unleserlichkeit kaum einen Reim darauf machen.

Du hast also eine beschränkte Teilmenge A von [mm] \IR_{+}. [/mm]

Was bedeutet es, daß A beschränkt ist?

Und weiter? Sollst Du vielleicht zeigen, daß [mm] supA=(infA^{-1})^{-1} [/mm] richtig ist?

Falls ich die Aufgabe korrekt erraten habe, kannst Du gleich mal sagen, was hier mit [mm] A^{-1} [/mm] gemeint ist.

Dann, als kleine Vorübung, prüfe mal, ob die Aussage für [mm] A:=\{7, 8, 29\} [/mm] gilt.

Danach können wir weitersehen.
(Die Def. von inf und sup mal aufzuschreiben, wäre auch kein Fehler.)

Danach kann man weitersehen.

LG Angela



> DIe Definition von Supremum und Infimum kenne
> ich, habe jedoch keinen Lösungsansatz
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
Beweisen von supA=inf(A-1)-1: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:40 So 04.11.2012
Autor: emilyerdbeer

DIe Aufgabenstellung ist richtig supA=(infA ^-1 )^-1
ICh weiß leider nicht wie man das richtig schreibt, sodass Portenzen enstehen

Bezug
                        
Bezug
Beweisen von supA=inf(A-1)-1: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:48 So 04.11.2012
Autor: angela.h.b.

Hallo

ich hab' Deinen Eingangsbeitrag entsprechend bearbeitet, durch Klick auf "Quelltext" (unter dem Beitrag) siehst Du, wie ich es gemacht habe.

Exponenten gehen mit ^ und dann den gewünschten Exponenten in geschweifte Klammern.

LG Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]