matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenInduktionsbeweiseBeweisführung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Induktionsbeweise" - Beweisführung
Beweisführung < Induktion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Induktionsbeweise"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweisführung: Hilfe bei Lösung
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 19:52 Do 17.10.2013
Autor: iroc

Beweis für die Formel

[Dateianhang nicht öffentlich]

a) direkt: gehe von

[Dateianhang nicht öffentlich]

aus, zerlege das Binom und spalte in einzelne Summen.
gehe dann vom ursprünglichen Ausdruck aus und versuche auf die Form

[Dateianhang nicht öffentlich]

zu bringen.

b) Beweis durch vollständige Induktion



Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
http://www.gute-mathe-fragen.de/

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Anhang Nr. 2 (Typ: png) [nicht öffentlich]
Anhang Nr. 3 (Typ: png) [nicht öffentlich]
        
Bezug
Beweisführung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:59 Do 17.10.2013
Autor: Diophant

Hallo iroc,

du solltest schon zu den Dateianhängen angeben, wo sie herstammen. Ich denke mal, dass eigentlich nichts gegen das Freischalten spricht, aber wir sollten die Quelle kennen.

Gruß, Diophant

Bezug
                
Bezug
Beweisführung: eintippen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:00 Do 17.10.2013
Autor: Loddar

Hallo!


Es stellt sich viel mehr die Frage, warum derartig kurze Terme nicht hier direkt eingetippt werden.


Gruß
Loddar

Bezug
        
Bezug
Beweisführung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:07 Do 17.10.2013
Autor: abakus


> Beweis für die Formel

>

> [Dateianhang nicht öffentlich]

>

> a) direkt: gehe von

>

> [Dateianhang nicht öffentlich]

>

> aus, zerlege das Binom und spalte in einzelne Summen.
> gehe dann vom ursprünglichen Ausdruck aus und versuche auf
> die Form

>

> [Dateianhang nicht öffentlich]

>

> zu bringen.

>

> b) Beweis durch vollständige Induktion

>
>
>

> Ich habe diese Frage auch in folgenden Foren auf anderen
> Internetseiten gestellt:
> http://www.gute-mathe-fragen.de/

Hallo,
welche Frage?
Bis jetzt steht hier nur eine zitierte Aufgabenstellung.
An welcher Stelle deines Ansatzes bist du steckengeblieben, und welche Frage ergibt sich daraus? Bitte werde etwas konkreter.
Gruß Abakus

Bezug
                
Bezug
Beweisführung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:14 Do 17.10.2013
Autor: iroc

Hallo,
Danke für die schnelle Rückmeldung.
Ich komme leider nicht all zu weit mit der Lösung.
Die leichten Part sprich die Zerlegung in einzelne Summen ist keine Hürde, jedoch die Überführung in die Form der Summe von j hoch3 + Rest um so mehr!
Und beim zweiten Teil weiß ich gar nicht wohin!
Induktionsanfang mit kleinsten Betrag sprich "n" und dann "n+1".
Nur wie???

Bezug
                        
Bezug
Beweisführung: Antwort
Status: (Antwort) fertig Status 
Datum: 07:23 Fr 18.10.2013
Autor: Al-Chwarizmi


>  Ich komme leider nicht all zu weit mit der Lösung.
>  Die leichten Part sprich die Zerlegung in einzelne
>  Summen ist keine Hürde

OK , zeig das doch mal hier ! (gute Übung für den
Einsatz des "hauseigenen" Editors - und du übernimmst
damit einen Teil der Arbeit, die andernfalls wir für
dich erledigen müssten)

>  jedoch die Überführung in die Form der
> Summe von j hoch3 + Rest um so mehr!

Bezeichne zum Beispiel die gesuchte Summe so:

     $\ [mm] S_n\ [/mm] =\ [mm] \summe_{k=1}^{n}k^2$ [/mm]

und die Summe der Kuben:

     $\ [mm] T_n\ [/mm] =\ [mm] \summe_{k=1}^{n}k^3$ [/mm]

Schreibe nun die nach der binomischen Formel
aufgedröselte Summe einmal so auf, dass du
diese Abkürzungen einsetzt (und dazu auch
z.B. [mm] T_{n+1} [/mm] )  und befolge dann den Hinweis
in der Aufgabenstellung.
Da die gesuchte Summe [mm] S_n [/mm] auf der rechten
Seite der Gleichung auftritt, kann man dann
nach dieser zu bestimmenden Größe auflösen
und kommt mit etwas Geschick zur schon
angegebenen Summenformel.


>  Und beim zweiten Teil weiß ich gar nicht wohin!
>  Induktionsanfang mit kleinsten Betrag sprich "n" und dann
> "n+1".
>  Nur wie???  

Schau dir zuerst nochmals ähnliche Beweise mit
vollständiger Induktion an und übertrage die
dortigen Überlegungen auf den aktuellen Fall.
Wenn du auch dafür mal wenigstens einen eigenen
Anfang vorzuweisen hast, schauen wir weiter !

LG ,   Al-Chwarizmi


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Induktionsbeweise"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 12m 4. Diophant
ULinAAb/Kern und Bild bestimmen
Status vor 17m 3. Dom_89
DiffGlGew/Anwenden der Substitution
Status vor 3h 17m 2. fred97
IntTheo/mehrdim. part. Int., Doppelint
Status vor 9h 25m 7. HJKweseleit
USons/Bedeutung von dx, dt in Formel
Status vor 9h 59m 9. HJKweseleit
S8-10/Ableitung
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]