matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSonstigesBeweisverfahren - Induktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Sonstiges" - Beweisverfahren - Induktion
Beweisverfahren - Induktion < Sonstiges < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweisverfahren - Induktion: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 16:28 Sa 27.11.2004
Autor: anni-1986

hi, ich habe in der Schule eine aufgabe erhalten, die ich nicht lösen kann. könnt ihr mir weiterhelfen? die aufgabe soll mit dem beweisverfahren induktion gelöst werden.

Aufgabe:
Die Multiplikation zweier ungerader Zahlen a,b (Natürliche Zahlen) ergibt immer eine ungerade Zahl.

Danke anni

        
Bezug
Beweisverfahren - Induktion: Idee und Frage an die andern
Status: (Antwort) fertig Status 
Datum: 20:12 Sa 27.11.2004
Autor: cremchen


Halli hallo!

> hi, ich habe in der Schule eine aufgabe erhalten, die ich
> nicht lösen kann. könnt ihr mir weiterhelfen? die aufgabe
> soll mit dem beweisverfahren induktion gelöst werden.
>  
> Aufgabe:
>  Die Multiplikation zweier ungerader Zahlen a,b (Natürliche
> Zahlen) ergibt immer eine ungerade Zahl.

Also ich habe überlegt wie man an diese Aufgabe mittels Induktion herangehen kann!
Ich habs mir folgendermaßen überlegt:
Sei b eine ungerade Zahl, d.h. sie hat die Gestalt b=2t+1
Induktionsanfang ist ja klar:
Für 1 gilt: 1*b=ungerade
Induktionsvoraussetzung ist nun: für ein a=2n+1 gilt:
a*b=(2n+1)*(2t+1)=4nt+2t+2n+1 ist ungerade
Induktionsbehauptung:
(a+2)*b ist wieder ungerade
Es gilt nun
(a+2)*b=(2n+1+2)*b=(2*(n+1)+1)*(2t+1)=4nt+2n+2t+1+4t+2
=4nt+6t+2n+3
Nun könntest du auf zwei Arten argumentieren:
1) das Produkt (a+2)*b ist offensichtlich ungerade, da 4nt+6t+2n gerade ist, und 3 ungerade.
2) du weißt dass 4nt+2t+2n+1 ungerade ist aus der Induktionsvoraussetzung. Bleibt 4t+2 übrig, dass zu a*b addiert werden muß um (a+2)*b zu erhalten. das ist wiederum gerade, und ungerade+gerade=ungerade.

Ich würd die zweite Argumentation bevorzugen, da sie sich auf die Induktionsvoraussetzung bezieht!

Ich frage mich nur, warum man diesen umständlichen Weg gehen muß.
Kann man nicht einfach zwei ungerade Zahlen multiplizieren?
(2n+1)*(2m+1)=2mn+2m+2n+1 ist ja ungerade egal welche Zahlen man für n und m nimmt!

Also wenn mir das jemand beantworten könnte wär das natürlich cool!

Liebe Grüße
Ulrike

Bezug
                
Bezug
Beweisverfahren - Induktion: Idee
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:28 So 28.11.2004
Autor: JanSu

Ich vermute wirklich, dass man den einfachen Weg hier nur nicht nimmt, weil das Beweisverfahren Induktion geübt werden soll.

Meiner Ansicht nach spricht nichts gegen den direkten Beweis. ;-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]