Beziehung Lage Ebene < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Gegeben seien die Punkte A= [mm] \vektor{3 \\ -2 \\ 1 }; [/mm] B= [mm] \vektor{3 \\ 3 \\ 1 } [/mm] ; C= [mm] \vektor{ 6 \\ 3 \\ 5 }
[/mm]
a) Stellen Sie die Gleichung der Ebene E1 durch die drei Punkte in Normalform auf.
b) Weiterhin ist eine Gerade g: [mm] \overrightarrow{x} [/mm] = [mm] \vektor{ 0 \\ 3 \\ 9,5 }+ [/mm] s [mm] \vektor{3 \\ 5 \\ 4 }
[/mm]
Zeigen Sie, dass die Gerade g parallel zur Ebene E1 verläuft.
c) Berechnen Sie den Abstand der Geraden g zur Ebene E1. |
Hi,
ich habe bei der ersten a) [mm] \vektor{ 12 \\ -9 \\ -9 } [/mm] raus.
Also [mm] \vektor{ 12 \\ -9 \\ -9 }*( \overrightarrow{x} [/mm] - [mm] \vektor{ 3 \\ -2 \\ 1 } [/mm] )
Und bei b) Habe ich [mm] \vektor{ 12 \\ -9 \\ -9 } *\vektor{3 \\ 5 \\ 4 } [/mm] = -45
Also es ist nicht parallel, da müsste ja 0 rauskommen damit die parallel sind.
Habe ich etwas falsch gemacht?
Weil ich in der nächsten Aufgabe den Abstand der Geraden zur Ebene berechnen soll... was ja nicht geht, weil die nicht parallel sind ( nach meiner Rechnung ).
LG
Schlumpf
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 14:30 Fr 30.01.2015 | Autor: | Fulla |
Hallo Schlumpf!
> Gegeben seien die Punkte A= [mm]\vektor{3 \\ -2 \\ 1 };[/mm] B=
> [mm]\vektor{3 \\ 3 \\ 1 }[/mm] ; C= [mm]\vektor{ 6 \\ 3 \\ 5 }[/mm]
>
> a) Stellen Sie die Gleichung der Ebene E1 durch die drei
> Punkte in Normalform auf.
> b) Weiterhin ist eine Gerade g: [mm]\overrightarrow{x}[/mm] =
> [mm]\vektor{ 0 \\ 3 \\ 9,5 }+[/mm] s [mm]\vektor{3 \\ 5 \\ 4 }[/mm]
> Zeigen
> Sie, dass die Gerade g parallel zur Ebene E1 verläuft.
> c) Berechnen Sie den Abstand der Geraden g zur Ebene E1.
> Hi,
>
> ich habe bei der ersten a) [mm]\vektor{ 12 \\ -9 \\ -9 }[/mm] raus.
> Also [mm]\vektor{ 12 \\ -9 \\ -9 }*( \overrightarrow{x}[/mm] -
> [mm]\vektor{ 3 \\ -2 \\ 1 }[/mm] )
Wie bist du denn auf den Normalenvektor gekommen? Der stimmt nämlich nicht (wie du in Aufgabe b) sehen kannst).
> Und bei b) Habe ich [mm]\vektor{ 12 \\ -9 \\ -9 } *\vektor{3 \\ 5 \\ 4 }[/mm]
> = -45
> Also es ist nicht parallel, da müsste ja 0 rauskommen
> damit die parallel sind.
> Habe ich etwas falsch gemacht?
Siehe a).
> Weil ich in der nächsten Aufgabe den Abstand der Geraden
> zur Ebene berechnen soll... was ja nicht geht, weil die
> nicht parallel sind ( nach meiner Rechnung ).
Auch hier: siehe a).
Lieben Gruß,
Fulla
|
|
|
|
|
Ich habe den Richtungsvektor mal den Normalenvektor der Ebenen genommen.
(Skalarprodukt).
Wie hätte ich den vorgehen müssen?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 15:00 Fr 30.01.2015 | Autor: | Fulla |
Hallo nochmal!
> Ich habe den Richtungsvektor mal den Normalenvektor der
> Ebenen genommen.
> (Skalarprodukt).
Welchen Richtungsvektor? Und den Normalenvektor musst du doch gerade ausrechnen...
> Wie hätte ich den vorgehen müssen?
Aus den drei Punkten berechnest du zwei Richtungsvektoren, z.B. [mm]\overrightarrow{u}=\overrightarrow{AB}=\overrightarrow B - \overrightarrow A[/mm] und [mm]\overrightarrow v =\overrightarrow{AC}=\overrightarrow C - \overrightarrow A[/mm].
Dann bildest du das Kreuzprodukt [mm]\overrightarrow n=\overrightarrow u \times \overrightarrow v[/mm].
Lieben Gruß,
Fulla
|
|
|
|