matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGanzrationale FunktionenBeziehungen zwischen Parameter
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Ganzrationale Funktionen" - Beziehungen zwischen Parameter
Beziehungen zwischen Parameter < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beziehungen zwischen Parameter: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 08:43 Sa 17.04.2010
Autor: The-Nik

Aufgabe
Für jede Zahl t [mm] \ge [/mm] 1 ist eine Funktion [mm] f_{t} [/mm] gegeben durch [mm] f_{t}(x) [/mm] = [mm] \bruch{1}{4}(tx-5)^{2}. [/mm] Ihr Schaubild sei [mm] K_{t}. [/mm]
Zeigen sie, dass zwei verschiedene Kurven [mm] K_{t} [/mm] und [mm] K_{t\*} [/mm] außer dem A noch einen weiteren Punkt B [mm] (x_{B}|y_{B}) [/mm] gemeinsam haben.
Welche Werte kann [mm] x_{B} [/mm] annehmen?
Welche Beziehung muss zwischen zwei Parameterwerten t und t* gelten, damit sich [mm] K_{t} [/mm] und [mm] K_{t\*} [/mm] auf der Geraden x = 3 schneiden?

Hallo zusammen,

den Punkt A habe ich voher schon berechnet. Er liegt bei A(0|6,25).

Einen Lösung zur ersten Teilaufgabe habe ich schon: 0 < [mm] x_{B} [/mm] < 5. Ich konnte das aber nur aus den Zeichnungen entnehmen. Wie man das rechnerisch beweist, ist mir ein Rätsel. Vielleicht kann mir hier jemand helfen?

Das mit den Beziehungen ist auch so ne Sache. Ich habe mir das so gedacht. Ich setzt in die Funktion als x-Wert einfach 3 ein. Dann setzte ich zwei Funktionen gleich. Eine mit t und eine mit t*. Aber dann bekomme ich immer nur die Beziehung t = t* heraus. Da muss es doch noch einen anderen Weg geben?

Gruss,
The-Nik

(Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.)




        
Bezug
Beziehungen zwischen Parameter: vorrechnen
Status: (Antwort) fertig Status 
Datum: 09:35 Sa 17.04.2010
Autor: Loddar

Hallo The-Nik!


Gleichsetzen ist der reichtige Weg. Dann solltest Du uns aber mal vorrechnen, wie Du auf Dein Ergebnis kommst:

[mm] $$f_t(x) [/mm] \ = \ [mm] f_{t^\star}(x)$$ [/mm]
[mm] $$\bruch{1}{4}*\left(t*x-5\right)^2 [/mm] \ = \ [mm] \bruch{1}{4}*\left(t^\star*x-5\right)^2$$ [/mm]
Bedenke, dass Du nachher beim Wurzelziehen auch jeweils die Beträge nehmen musst.


Gruß
Loddar


Bezug
                
Bezug
Beziehungen zwischen Parameter: Beweis + neue Frage
Status: (Frage) überfällig Status 
Datum: 12:20 Sa 17.04.2010
Autor: The-Nik

Hey,

Genau das habe ich gemacht. Aber ich habe nicht auf die Beträge geachtet. Aber ist logisch. Das [mm] \bruch{1}{4} [/mm] muss man ja nicht beachten.
Und den Inhalt der Klammer nenne ich mal k

Also ist beim Gleichsetzten das rausgekommen:

[mm] k^{2} [/mm] = [mm] k\*^{2} [/mm]
k = [mm] k\* [/mm]

Aber ich habe eben mal wieder nicht beachtet das es auch -k* sein kann.
Also gilt auch:

[mm] k^{2} [/mm] = [mm] -k\*^{2} [/mm]
k = [mm] -k\* [/mm]

Wenn ich dann den Wert der Klammer einsetzte kommt das heraus:

3t-5 = [mm] 5-3t\* [/mm]
t* = [mm] \bruch{10}{3} [/mm] - [mm] t\* [/mm]

Ist das dann die Beziehung? Wenn ich als Probe ein paar Werte einsetzte klappt alles. Also müsste es richtig sein.

------------------------------------------------------------------------------------------

Nun taucht in der Folgeaufgabe wieder so ein ähnliches Problem mit Beziehungen zwischen Parametern auf. Diesesmal klappt das aber nicht mit gleichsetzten. Kann mir hier jemand beim Ansatz helfen?

Aufgabe:

Welche Beziehung muss zwischen a und [mm] \overline{a} [/mm] erfüllt sein, damit [mm] K_{\overline{a}} [/mm] aus [mm] K_{a} [/mm] durch Spiegelung an der Verbindungsgeraden der Wendepunkte hervorgeht?

Funktion:

[mm] f_{a}(x) [/mm] = [mm] ax^{4} [/mm] - [mm] 6ax^{2} [/mm] +5a + 4 (Form eines W -> 2 Wendepunkte)

Mein Gedanke:

Ich muss zuerst die Wendepunkte in Abhängigkeit von a herausfinden (Ableitung-nullsetzten-usw.)
Jetzt muss ich eine Funktion für die Gerade durch die WP aufstellen. An der wird ja gespiegelt. Doch wie geht es weiter?

Danke für eure Hilfe,
The-Nik

Bezug
                        
Bezug
Beziehungen zwischen Parameter: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:20 Mo 19.04.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]