Biegemoment < Bauingenieurwesen < Ingenieurwiss. < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 19:20 Do 12.08.2010 | Autor: | Kuriger |
Hallo und guten Abend
Obwohl ich unfähig bin, frage ich trotzdem wieder mal was....
Bestimmen Sie die maximale Nutzlast qk des dargestellten Plattenstreifens. Die Druckbewehrung darf zur Bestimmung von MRd vernachlässgt werden.
[Dateianhang nicht öffentlich]
Ich zweifle gerade an der Richtigkeit der musterlösung.
Denn das Eigengewicht wirkt überall und man kann es nicht einfach so anordnen, damit es ungünstig wirkt. Doch wenn ich das richtig sehe, wurde das genau in der Lösung gemacht. Beim maximalen Feldmoment wurde das Eigengewicht nur zwischen den beiden Auflagern (8m) eingesetzt. Doch in Wirklichkeit wirkt die Eigenlast auch in den beiden Auskragungen, was eine entlastende Wirkung hat. Deshalb dürfte nach meiner berechnung die Nutzlast [mm] q_k [/mm] etwas grösser sein.
oder wie siehst du es?
Danke, Gruss Kuriger
Dateianhänge: Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:46 Do 12.08.2010 | Autor: | Loddar |
Hallo Kuriger!
Die hiesige Vorliebe zur eingescannten Lösungen sollte Dir inzwischen hinreichend bekannt sein ...
Daher nur eine kurze Antwort: die Eigenlast auf den beiden Kragarmen für die Nutzlast im Feld ist doch berücksichtigt durch den Term, welcher zum [mm] $M_{R,d}$ [/mm] addiert wird.
Gruß
Loddar
|
|
|
|
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 21:54 Do 12.08.2010 | Autor: | Kuriger |
Hallo Loddar
Menschen sind gewohnheiteswesen, aber vielleicht kannst du dich mit Scan trotzdem noch anfreunden.
Wo soll das bgezogen werden? Ich sehe da, dass die Eigenlastauf 8m eingesetzt ist,
[mm] \bruch{8^2}{8} [/mm] * (1.35 * 6.5 + 1.5 * [mm] q_z) [/mm] Da wird ja nix abgezogen?
Gruss Kuriger
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 21:58 Do 12.08.2010 | Autor: | Loddar |
Hallo Kuriger!
> Menschen sind gewohnheiteswesen, aber vielleicht kannst du
> dich mit Scan trotzdem noch anfreunden.
Ganz klare Antwort: Nein! Warum sollte ich mir angewöhnen, Deine Arbeit zu machen?
Andersrum: gewöhne es Dir doch an, es denjenigen Menschen Recht zu machen, von denen Du etwas (entgeltfrei!) willst.
> Wo soll das bgezogen werden? Ich sehe da, dass die
> Eigenlastauf 8m eingesetzt ist,
>
> [mm]\bruch{8^2}{8}[/mm] * (1.35 * 6.5 + 1.5 * [mm]q_z)[/mm] Da wird ja nix
> abgezogen?
Dann mache die Augen auf und sieh genau hin!
Gruß
Loddar
|
|
|
|
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 21:59 Do 12.08.2010 | Autor: | Kuriger |
Loddar sags doch mir...abziehen heisst etwas subtrahieren, aber ich sehe kein Minuszeichen...
Gruss Kuriger
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 22:04 Do 12.08.2010 | Autor: | Loddar |
Kuriger, lies doch mal genau!
Wann habe ich wo etwas von subtrahieren gesagt????
Und wenn auf der einen Seite der Gleichung etwas addiert wird (und das hatte ich geschrieben. Aber ich kann wohl eh schreiben, was ich will: es wird je sowieso - zumindest nicht von Dir - gelesen!), ist das gleichbedeutend mit Subtraktion auf der anderen Seite der Gleichung.
Der Thread ist für mich beendet!
Loddar
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 13:55 Fr 13.08.2010 | Autor: | Kuriger |
Offensichtlich ist für dich der Post geschlossen, deshalb muss ich wohl oder übel einen neuen eröffnen....
[Dateianhang nicht öffentlich]
Ich rechne das mal auf eine Plattenrbeite von einem Meter
[mm] g_d [/mm] (Eigenegwicht) = 1.35 * 0.26*1.00 * 25kN/m3 = 8.775 kN/m
Momentgleichgewicht = 0 = 4.25 * (8.775 * 12.5) - 8.00 * B
B = 58.3 kN
A = 51.4 kN
Eigentlich wäre ja das Momentmaximum des Eigengewichtes nicht ganz in der Mitte, aber annähernd kann ich mal die Feldmitte annehmen..
[mm] M_{Eigenlastmax} [/mm] =- 3*(6*8.775 kN/m) + 4.00 * 51.4 kN = 47.7 kNm
Nun berechne ich den Biegewiderstand der unteren Bewehrung
[mm] Z_s [/mm] = 583 kN
[mm] x_d [/mm] = 35 mm
[mm] M_{Rd} [/mm] = 583 * [mm] 10^3 [/mm] * (260 - 35 - 8 - 35/2) = 116.3 kNm
Aufgrund des Momentes der Eigenlast bleibt für die Nutzlast noch folgendes Moment übrig:
116.3 kNm - 47.7 kNm = 68.6 kNm
68.6 * 10^6Nmm = [mm] \bruch{q_k * l^2}{8} [/mm] = [mm] \bruch{q_k * 8000^2}{8} [/mm]
[mm] q_k [/mm] = 8.6 kN/m
Wieso kommte ich auf einen höheren Wert?
Danke, Gruss Kuriger
Dateianhänge: Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:58 Fr 13.08.2010 | Autor: | M.Rex |
Hallo
> Offensichtlich ist für dich der Post geschlossen, deshalb
> muss ich wohl oder übel einen neuen eröffnen....
Das halte ich für ein Gerücht. Wahrscheinlich hast du ihn nur aus den Augen verloren - kein Wunder, bei deiner Postingrate
Ich habe ihn mal wieder in die alte Diskussion eingehängt.
Marius
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:43 Fr 13.08.2010 | Autor: | Kuriger |
Loddar hat in seinem Post mitgeteilt, dass für ihn der Beitrag geschlossen wäre....Gruss Kuriger
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 09:46 Sa 14.08.2010 | Autor: | M.Rex |
Hallo
Das ist soweit auch korrekt; Für ihn ist der Post geschlossen, aber nicht allgemein.
Marius
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 11:31 Sa 14.08.2010 | Autor: | Kuriger |
Irgendwie scheint die Stimmung etwas angespannt zu sein...
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 14:30 Sa 14.08.2010 | Autor: | leduart |
Hallo
toll, dass du das merkst! Beachte doch mal die Hinweise auf umgangsformen, besonders wichtig für leute, die seeehhhr viele Fragen haben.
Ich bewundere Lodars geduld!!
leduart
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 10:49 Di 17.08.2010 | Autor: | Kuriger |
Guten Morgen
kann mir denn niemand sagen, was an meiner Rechnung falsch ist?
Danke, Gruss Kuriger
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:29 Di 17.08.2010 | Autor: | Loddar |
Hallo Kuriger!
Deine Momentenberechnungen sind nur sehr grob. Aber gravierend ist bei Dir das fehlende Berücksichtigen des Teilsicherheitsbeiwertes ganz am Ende.
Gruß
Loddar
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 18:46 Di 17.08.2010 | Autor: | Kuriger |
Hallo Loddar
Teilsicherheitsnachweis? ERs ist ja [mm] q_k [/mm] gesucht und nicht [mm] q_d?
[/mm]
gruss Kuriger
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:54 Di 17.08.2010 | Autor: | Loddar |
Hallo!
> Teilsicherheitsnachweis? ERs ist ja [mm]q_k[/mm] gesucht und nicht [mm]q_d?[/mm]
Völlig richtig. Und was hast Du ausgerechnet?
Gruß
Loddar
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:06 Di 17.08.2010 | Autor: | Kuriger |
Ich bin dir wirklich dankbar um deine Hilfe, aber in meiner stressigen Situation ist es für mich etwas unangenehm, wenn ich immer so Häppchenweise dem richtigen Resultat auf die Spur kommen muss.
Sag es doch bitte, ich sehe es nicht, bekomme langsam aber sicher ein noch grösseres durcheinander
Gruss Kuriger
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:47 Di 17.08.2010 | Autor: | Loddar |
Hallo Kuriger!
Zunächst: dafür dass ich diesen Thread nicht mehr weiter beachten wollte, hast Du schon viel mehr Hilfe erhalten als vorgesehen!
> Ich bin dir wirklich dankbar um deine Hilfe, aber in meiner
> stressigen Situation ist es für mich etwas unangenehm,
> wenn ich immer so Häppchenweise dem richtigen Resultat auf
> die Spur kommen muss.
Das ist aber Dein und nicht unser Problem!
In meiner stressigen Situation habe ich halt auch nur Zeit für kurze Hinweise.
Und: hier im Forum gibt es halt nur Hilfe zur Selbsthilfe und keine vorgekauten Lösungen.
> Sag es doch bitte, ich sehe es nicht, bekomme langsam aber
> sicher ein noch grösseres durcheinander
Auch hier: Dein Problem, welches Du lösen musst!
Gruß
Loddar
|
|
|
|