matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenBijektivität
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Funktionen" - Bijektivität
Bijektivität < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bijektivität: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 17:23 Do 01.11.2007
Autor: Gelbmaus

Aufgabe
Es seien vier Mengen A,B,C,d und drei Abbildungen gegeben,f:A-> B,g:B->C, h:C->D.Zeigen Sie: Sind g°f und h°g bijektiv, so sind f,g,h alle bijektiv.

Ich weiß was Bijektivität ist und das diese Aussage stimmt nur kann ich nicht beweiseb das f und h bijektiv sind.Ich danke im Vorraus für die Hilfe.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Bijektivität: Antwort
Status: (Antwort) fertig Status 
Datum: 17:36 Do 01.11.2007
Autor: leduart

Hallo
Du musst mit Elementen deiner Mengen erst mal hinschreiben, was es bedeutet dass
[mm] g\circ [/mm] f und [mm] h\circ [/mm] g bijektiv sind.
Dann aufschreiben was etwa f inj. bedeutet.usw.
dann ergibt sich das schnell!
Kurz du musst mit den Definitionen immer wieder arbeiten.
Gruss leduart

Bezug
                
Bezug
Bijektivität: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:55 Fr 02.11.2007
Autor: Gelbmaus

Danke für den Tipp!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]