matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesBild(A)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra Sonstiges" - Bild(A)
Bild(A) < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bild(A): tipp
Status: (Frage) beantwortet Status 
Datum: 19:01 Sa 19.07.2008
Autor: marie11

Aufgabe
wie bestimme ich Basis von Bild(A)

Basis von Kern(A) hab ich schon bestimmt, aber wie bestimme ich Basis von Bild(A)?

Könnt ihr mir da weiter helfen?
zB.

[mm] \pmat{1&0&3&2\\1&1&0&2\\2&1&3&4} [/mm]
in ZSF:
[mm] \pmat{1&0&3&2\\0&1&-3&0\\0&0&0&0} [/mm]



        
Bezug
Bild(A): Antwort
Status: (Antwort) fertig Status 
Datum: 19:27 Sa 19.07.2008
Autor: schachuzipus

Hallo marie11,

> wie bestimme ich Basis von Bild(A)
>  Basis von Kern(A) hab ich schon bestimmt, aber wie
> bestimme ich Basis von Bild(A)?
>  
> Könnt ihr mir da weiter helfen?
>  zB.
>  
> [mm]\pmat{1&0&3&2\\1&1&0&2\\2&1&3&4}[/mm]
>  in ZSF:
>  [mm]\pmat{1&0&3&2\\0&1&-3&0\\0&0&0&0}[/mm] [ok]

Damit weißt du, dass der Rang von A, also $rg(A)=2$ ist

Es ist $rg(A)=dim(Bild(A))$, also weißt du, dass das Bild von A ein 2dim. VR ist

Die Spalten von A spannen das Bild(A) auf, suche dir also 2 linear unabhängige Spalten von A aus und du hast eine Basis des Bildes von A


LG

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]