matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenBild (f)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Abbildungen" - Bild (f)
Bild (f) < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bild (f): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:58 Fr 05.06.2009
Autor: aga88

Ich habe diese Frage in keinem anderen Forum gestellt.

Hallo! Ich stehe nun kurz vor meiner Klausur zur Linearen Algebra. Beim Lernen bin ich aber auf das Thema Bild und Kern gestossen. Wie man Kern berechnet weiß ich. Nur erschließt sich für mich das Bild überhaupt nicht.

Die Definition Bild (A)= [mm] \{Ax | x im Definitionsbereich} [/mm] sagt mir überhaupt nix.

Kann mir bitte jemand Schritt für Schritt schreiben was zu tun ist? Das hatte ja auch etwas mit Erzeugendensystem gemeinsam. Aber selbst das wusste ich nicht, wie ich das anwenden sollte.

Bin für jede Hilfe dankbar.

LG

        
Bezug
Bild (f): Antwort
Status: (Antwort) fertig Status 
Datum: 14:23 Fr 05.06.2009
Autor: angela.h.b.


> Die Definition Bild (A)= [mm]\{Ax | x im Definitionsbereich}[/mm]
> sagt mir überhaupt nix.

Hallo,

im Bild sind alle die Vektoren,  die Du erhältst, wenn Du die Matrix A mit jeden erlaubten Vektor x multiplizierst.

Du kannst zeigen, daß das Bild wieder ein VR ist.

> Kann mir bitte jemand Schritt für Schritt schreiben was zu
> tun ist? Das hatte ja auch etwas mit Erzeugendensystem
> gemeinsam. Aber selbst das wusste ich nicht, wie ich das
> anwenden sollte.

Das Bild einer Matrix ist der Raum, der von den Spaltenvektoren erzeugt wird.

Interessieren tut man sich meist für zweierlei: Dimension und Basis.

Bring hierfür die Matrix auf Zeilenstufenform.

Der Rang ist die Dimension des Bildes.

Die Basis findest Du so:

schau, in welchen Spalten in der ZSF die führenden Elemente der Nichtnullzeilen stehen.

Die entsprechenden Spalten der ursprünglichen Matrix bilden eine Basis des Bildes.


Bei Rckfragen poste btte eine konkrete Matrix und ihre ZSF mit.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]