matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAbbildungen und MatrizenBild richtig?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Abbildungen und Matrizen" - Bild richtig?
Bild richtig? < Abbildungen+Matrizen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bild richtig?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:07 Sa 28.12.2013
Autor: bla234

Aufgabe
Bestimmen des Bildes von

[mm] \pmat{ 3 & 2 & 1 \\ 0 & 5 & -3 \\ -2 & 1 & -2} [/mm]

Ich bin ein bisschen verunsichert ob das was ich hier rechne überhaupt stimmt: Also ich suche die unabhängigen Spalten der Matrix. Ich transponiere und mache Gauß:

[mm] \pmat{ 3 & 0 & -2 \\ 2 & 5 & 1 \\ 1 & -3 & -2}= \pmat{ 1 & -5 & -3 \\ 2 & 5 & 1 \\ 1 & -3 & -2}=\pmat{ 0 & -8 & -5 \\ 0 & 11 & 5 \\ 1 & -3 & -2}=\pmat{ 0 & -8 & -5 \\ 0 & 1 & 5/11 \\ 1 & -3 & -2} [/mm] = [mm] \pmat{ 0 & 0 & -15/11 \\ 0 & 1 & 5/11 \\ 1 & -3 & -2} [/mm]

Das Bild sind doch jetzt die linear unabhängigen Zeilen oder?


        
Bezug
Bild richtig?: Antwort
Status: (Antwort) fertig Status 
Datum: 13:18 Sa 28.12.2013
Autor: fred97


> Bestimmen des Bildes von
>  
> [mm]\pmat{ 3 & 2 & 1 \\ 0 & 5 & -3 \\ -2 & 1 & -2}[/mm]
>  Ich bin ein
> bisschen verunsichert ob das was ich hier rechne überhaupt
> stimmt: Also ich suche die unabhängigen Spalten der
> Matrix. Ich transponiere und mache Gauß:
>  
> [mm]\pmat{ 3 & 0 & -2 \\ 2 & 5 & 1 \\ 1 & -3 & -2}= \pmat{ 1 & -5 & -3 \\ 2 & 5 & 1 \\ 1 & -3 & -2}=\pmat{ 0 & -8 & -5 \\ 0 & 11 & 5 \\ 1 & -3 & -2}=\pmat{ 0 & -8 & -5 \\ 0 & 1 & 5/11 \\ 1 & -3 & -2}[/mm]
> = [mm]\pmat{ 0 & 0 & -15/11 \\ 0 & 1 & 5/11 \\ 1 & -3 & -2}[/mm]

Die "=" - Zeichen sind fehl am Platz !!!!

>  
> Das Bild sind doch jetzt die linear unabhängigen Zeilen
> oder?

Ja, wenn Du sie als Spalten schreibst.

Die ganze Rechnerei hättest Du Dir sparen können, denn obige Matrix , ich nenne sie A, ist invertierbar.

Ist also [mm] f:\IR^3 \to \IR^3 [/mm] gegeben durch f(x)=Ax, so ist

   [mm] f(\IR^3)=\IR^3. [/mm]

FRED

>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]