matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenBild und Kern lineare Abbildun
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Abbildungen" - Bild und Kern lineare Abbildun
Bild und Kern lineare Abbildun < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bild und Kern lineare Abbildun: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:03 Di 17.03.2009
Autor: sinitsa1

Aufgabe
Wir betrachten die Standartvektorräume V [mm] :=\IR³ [/mm] und W [mm] :=\IR² [/mm] über [mm] \IR. [/mm] Bestimmen Sie für die lin Abb. g: V -> W, die durch

g (x,y,z) := (y-2z, x-y+2z) definiert wird, die Vektorräume ker (g) und im (g) durch Angabe jeweils einer Basis.

Hallo für alle

Kann mir, bitte jemand erklären was ist Ker(f) und was ist Im (f), und was ist Unterschied zwischen den Beiden? Außerdem, wie kann ich Basis von den beiden finden? Ich bitte um möglichsten einfache Erklärung, da Deutsch nicht meine Muttersprache ist.

Danke

        
Bezug
Bild und Kern lineare Abbildun: Antwort
Status: (Antwort) fertig Status 
Datum: 19:55 Di 17.03.2009
Autor: pelzig

Ist [mm] $f:V\to [/mm] W$ linear, dann ist [mm] $ker(f):=\{v\in V\mid f(v)=0\}=f^{-1}(0)\subset [/mm] V$ und [mm] $im(f):=f(V):=\{f(v)\mid v\in V\}\subset [/mm] W$.
Ein offensichtlicher Unterschied ist, dass der Kern in V und das Bild in W liegt. Das Bild sind eben alle Vektoren, die f "trifft".

Zum berechnen einer Basis des Kerns löse zunächst das homogene lineare Gleichungssystem $Ax=0$, wobei A die Darstellungsmatrix von f ist.

Das Bild wird erzeugt durch [mm] $f(e_i)$ [/mm] (i=1,2,3), wobei [mm] $e_i$ [/mm] die Standartbasen sind, also [mm] $(1,0,0)^t, [/mm] ...$. Wähle unter diesen drei Vektoren ein maximales linear unabhängiges System aus.

Gruß, Robert

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]