matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - SkalarprodukteBilinearformen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Skalarprodukte" - Bilinearformen
Bilinearformen < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bilinearformen: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 13:17 So 13.06.2010
Autor: Ayame

Aufgabe
Es seien [mm] \beta_{1}: [/mm] XxX [mm] \to [/mm] K und [mm] \beta_{2}: [/mm] XxX [mm] \to [/mm] K zwei symmetrische Bilinearformen. Man zeige für den Fall, dass im Körper K Gilt :
1+1 [mm] \not= [/mm] 0 die folgende Aussaage :
Gilt [mm] \beta_{1}(\vec{a},\vec{a}) [/mm] = [mm] \beta_{2}(\vec{a},\vec{a}) [/mm] für alle [mm] \vec{a} \in [/mm] X, so folgt [mm] \beta_{1}= \beta_{2}. [/mm]


die letztere Aussage ist glaube ich ziemlich trivial :

[mm] \beta_{1}(\vec{a},\vec{a}) [/mm] = [mm] \vec{a}*\vec{a} [/mm] = [mm] (a_{1},...,a_{n}) [/mm] * [mm] \pmat{ b_{1}*b_{1} & ... & b_{1}*b_{n} \\ ... & ... &...\\ b_{n}*b_{1}& ...& b_{b}*b_{n} } *\vektor{ a_{1}\\ ...\\ a_{n}} [/mm] , wobei [mm] (b_{1},...,b_{n}) [/mm] Basis von X ist.

hier müsste ich dann irgendwie die Gleichheit zu [mm] \beta_{2} [/mm] zeigen.
oder ?

Ich versteh aber nicht ganz wie die Vorraussetzung des Körpers :1+1 [mm] \not= [/mm] 0 da eine Rolle spielt. oder wie ich das einsetzten soll.

kann mir jemand etwas helfen ?

        
Bezug
Bilinearformen: Hinweis
Status: (Antwort) fertig Status 
Datum: 14:03 So 13.06.2010
Autor: wieschoo


> hier müsste ich dann irgendwie die Gleichheit

ist schon gut. Bitte beachte das noch keine Aussage über [mm]\beta_{1}(\vec{a},\vec{b})= \beta_{2}(\vec{a},\vec{b}),a\neq b[/mm] da steht.

> [mm]\beta_{1}(\vec{a},\vec{a})= \beta_{2}(\vec{a},\vec{a})[/mm] für alle [mm]\vec{a} \in[/mm] X, so

Die Aussage gilt auch für die Basisvektoren. Dann holt dir [mm] $\beta_{1}(\vec{e_i},\vec{e_i})$ [/mm] nur den ii Eintrag der darstellenden Matrix von [mm] $\beta_{1}$. [/mm] Du weißt also nur, dass die Einträge auf der Hauptdiagonalen übereinstimmen.

Dennoch weißt du auch
$(x+y,x+y)=(x,x)+(y,y)+2(x,y)$

Bezug
                
Bezug
Bilinearformen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:37 So 13.06.2010
Autor: Ayame


> Dann holt dir
> [mm]\beta_{1}(\vec{e_i},\vec{e_{i}})[/mm] nur den ii Eintrag der
> darstellenden Matrix von [mm]\beta_{1}[/mm]. Du weißt also nur,
> dass die Einträge auf der Hauptdiagonalen
> übereinstimmen.
>  
> Dennoch weißt du auch
>  [mm](x+y,x+y)=(x,x)+(y,y)+2(x,y)[/mm]

Meinst du das so ?:

[mm] \beta_{1}(\vec{e_{i}},\vec{e_{i}})= e_{i} [/mm] * [mm] \pmat{ e_{1}e_{1} & ...&e_{1}e_{i}&...&e_{1}e_{n} \\ ... & ...&....&....&....\\e_{i}e_{1}&....& e_{i}e_{i} &...&e_{i}e_{n}\\...&...&...&...&...\\e_{n}e_{1}&...&e_{n}e_{i}&...&e_{n}e_{n}} *e_{i} [/mm] = [mm] e_{i}^{4} [/mm] ?

Ich versteh nicht ganz wie ich das machen soll.

Bezug
                        
Bezug
Bilinearformen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:27 So 13.06.2010
Autor: wieschoo

Deine darstellen Matrix ist ja [m]B_i:= \pmat{ \beta_i(e_1,e_1) & \ldots & \beta_i(e_1,e_n) \\ \vdots&\ddots &\vdots \\ \beta_i(e_n,e_1) & \ldots & \beta_i(e_n,e_n) }[/m]

Da ja [mm] $\beta_1(a,a)=\beta_2(a,a)$ [/mm] gilt, sind auf jedem Fall die Einträge auf der Hauptdiagonalen der Matrizen [mm] $B_1,B_2$ [/mm] gleich. Denn du erhälst durch direktes ausrechnen nur den ii-Eintrag durch [mm] $\beta_1(e_i,e_i)$ [/mm] wobei [mm] $e_i$ [/mm] ein Basisvektor ist.

Du sollst aber zeigen, dass auch [mm] $\beta_1(a,b)=\beta_2(a,b)$ [/mm] für $a=b$ und sogar für [mm] $a\neq [/mm] b$. Wir interessieren uns, ob die Einträge neben der Hauptdiagonale und gleich sein müssen oder nicht.
Da wir eine symmetrische Billinearform haben wissen wir aber auch
[mm]\beta_1(c,c)+\beta_1(d,d)+2\cdot \beta_1(c,d)=\beta_1(c+d,c+d)=\beta_2(c+d,c+d)=\beta_2(c,c)+\beta_2(d,d)+2\cdot \beta_2(c,d)[/mm]

Jetzt kommt auch die Charakteristik vom Körper ins Spiel, denn wg [mm] $char(K)\neq [/mm] 2$ fällt jeweils der interessante Term nicht weg.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]