matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationBinomi/e-FKt.
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Differentiation" - Binomi/e-FKt.
Binomi/e-FKt. < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Binomi/e-FKt.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:32 Di 08.05.2018
Autor: gopro

Aufgabe
a)
Es sei für [mm] f,g:\IC\to\IC (fg)^{(n)}=\summe_{k=0}^{n}\vektor{n \\ k}f^{(k)}g^{(n-k)} [/mm]
Folgern Sie mit f(x) = [mm] e^{ax} [/mm] und g(x) = [mm] e^{bx} [/mm] den Binomialsatz für a,b ∈C.

b)
Es sei f : C→C differenzierbar mit f'(x) = f(x) für alle x ∈C und f(0) = 1. Zeigen Sie: f(x + y) = f(x)f(y) für alle x,y ∈C;
Hinweis: Berechnen Sie die Ableitung von g(x) = f(x + y)f(−x).

Habe folgende interessante Probleme bei denen ich aber nicht richtig weiterkomme...

        
Bezug
Binomi/e-FKt.: Antwort
Status: (Antwort) fertig Status 
Datum: 02:49 Mi 09.05.2018
Autor: fred97


> a)
>  Es sei für [mm]f,g:\IC\to\IC (fg)^{(n)}=\summe_{k=0}^{n}\vektor{n \\ k}f^{(k)}g^{(n-k)}[/mm]

Merkwürdige Formulierung. ......

Darfst du die Leibnizformel benutzen oder sollst du sie auch noch beweisen?


>  
> Folgern Sie mit f(x) = [mm]e^{ax}[/mm] und g(x) = [mm]e^{bx}[/mm] den
> Binomialsatz für a,b ∈C.


Diese Aufgabe ist doch ehrlich gesagt Pillepalle. Mit f [mm] (x)g(x)=e^{(a+b)x} [/mm]
schreibe die linke Seite der Formel hin. Nun ist das gleich der rechten Seite,  für alle x !
Auch für x=0 .......

>  
> b)
>  Es sei f : C→C differenzierbar mit f'(x) = f(x) für
> alle x ∈C und f(0) = 1. Zeigen Sie: f(x + y) = f(x)f(y)
> für alle x,y ∈C;
> Hinweis: Berechnen Sie die Ableitung von g(x) = f(x +
> y)f(−x).

Der Hinweis ist dazu da, dass du ihn verwendest!  Tu das, dann solltest du sehen, dass die Ableitung von g überall =0 ist.

Damit ist g konstant.  Jetzt mach Du weiter



>  Habe folgende interessante Probleme bei denen ich aber
> nicht richtig weiterkomme...





Bezug
                
Bezug
Binomi/e-FKt.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:50 Mi 09.05.2018
Autor: gopro

Hallo fred!!!

Ja für dürfen die Leibniz-Regel als gegeben ansehen.
Es gilt dass $ [mm] f(x)g(x)=e^{(a+b)x} [/mm] $ ist.
Nun ist [mm] f,g:\IC\to\IC (fg)^{(n)}=\summe_{k=0}^{n}\vektor{n \\ k}f^{(k)}g^{(n-k)} [/mm] und somit [mm] (e^{(a+b)x})^{(n)}=\summe_{k=0}^{n}\vektor{n \\ k}e^{ax}^{(k)}e^{bx}^{(n-k)} [/mm]
Irgendwie verstehe ich nicht wie ich jetzt von der Leibnizregel auf die Binomialformel schließen soll? Wie ist das jetzt auf die Binomialformel zurückzuführen, kann man das per Induktion zeigen?

Bei der b ist g'(x)=f'(x+y)f(-x)+f(x+y)f'(-x) oder?
Und wie kann man jetzt sehen, dass das gleich null ist

Bezug
                        
Bezug
Binomi/e-FKt.: Antwort
Status: (Antwort) fertig Status 
Datum: 06:29 Do 10.05.2018
Autor: fred97


> Hallo fred!!!
>  
> Ja für dürfen die Leibniz-Regel als gegeben ansehen.
>  Es gilt dass [mm]f(x)g(x)=e^{(a+b)x}[/mm] ist.
>  Nun ist [mm]f,g:\IC\to\IC (fg)^{(n)}=\summe_{k=0}^{n}\vektor{n \\ k}f^{(k)}g^{(n-k)}[/mm]
> und somit [mm](e^{(a+b)x})^{(n)}=\summe_{k=0}^{n}\vektor{n \\ k}e^{ax}^{(k)}e^{bx}^{(n-k)}[/mm]
> Irgendwie verstehe ich nicht wie ich jetzt von der
> Leibnizregel auf die Binomialformel

Es sollte Dir doch klar sein,dass aus all dem nix wird,wenn Du nicht verwendest, dass die k-te Ableitung von [mm] e^{cx}, [/mm] wie aussieht?

So:  [mm] c^ke^{cx} [/mm]



Wie

> ist das jetzt auf die Binomialformel zurückzuführen, kann
> man das per Induktion zeigen?
>
> Bei der b ist g'(x)=f'(x+y)f(-x)+f(x+y)f'(-x) oder?

Ist Dir bekannt, wie man das Wort Kettenregel schreibt? Lerne es schreiben und mache dann aus dem + auf der rechten Seite ein - .


>  Und wie kann man jetzt sehen, dass das gleich null ist

Ich krieg die Krise.  Wie willst Du einen Beweis  führen, wenn Du die  gegebenen Voraussetzungen  nicht verwendest!

Für f soll doch gelten f'=f




Bezug
                                
Bezug
Binomi/e-FKt.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:45 Do 10.05.2018
Autor: gopro

Ist ja schon gut @fred97
Der eigentliche Sinn dieses Forums besteht doch darin anderen Menschen bei Aufgaben zu helfen oder Ideen zu geben und nicht darin zu meinen, dass ja alles glasklar ist. Wenn dies der Fall wäre würde ich ja nicht meine Frage in diesem Forum posten.
Ich habe jetzt versucht die Aufgabe soweit selbst zu lösen und versuche nun nicht mehr zu nerven mit meinen scheinbar "trivialen Problemen", da Mathematikprofessoren auch sicherlich Wichtigeres zu tun haben. ;-)

Bezug
                                        
Bezug
Binomi/e-FKt.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:54 Do 10.05.2018
Autor: fred97


> Ist ja schon gut @fred97
>  Der eigentliche Sinn dieses Forums besteht doch darin
> anderen Menschen bei Aufgaben zu helfen oder Ideen zu geben



Und was hab ich gemacht? In meinen beiden Antworten habe ich so viele Ideen und Hinweise  gegeben, dass Du die Aufgaben eigentlich hinbekommen solltest.

Fazit : Du hast Fragen gestellt,  ich habe Dir hilfreiche Antworten gegeben, was willst
Du mehr?


> und nicht darin zu meinen, dass ja alles glasklar ist. Wenn
> dies der Fall wäre würde ich ja nicht meine Frage in
> diesem Forum posten.
>  Ich habe jetzt versucht die Aufgabe soweit selbst zu
> lösen und versuche nun nicht mehr zu nerven mit meinen
> scheinbar "trivialen Problemen", da Mathematikprofessoren
> auch sicherlich Wichtigeres zu tun haben. ;-)


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 3h 44m 4. angela.h.b.
SGeradEbene/Abstand eines Punktes
Status vor 9h 34m 4. HJKweseleit
GraphTheo/Zusammenhängender Zufallsgraph
Status vor 14h 42m 6. HJKweseleit
ULinAAb/Kern und Bild bestimmen
Status vor 19h 15m 5. Dom_89
DiffGlGew/Lösung der DGL
Status vor 20h 10m 4. Dom_89
SGeradEbene/Parallele Ebenen
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]