matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-InduktionBinomialkoeffizent - Teilmenge
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis-Induktion" - Binomialkoeffizent - Teilmenge
Binomialkoeffizent - Teilmenge < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Binomialkoeffizent - Teilmenge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:28 So 26.11.2006
Autor: stepho

Aufgabe
Zeigen Sie mit vollständiger Induktion, dass eine n-Elementige Menge genau [mm] \vektor{n \\ k} [/mm] Teilmengen mit k Elementen enthält. n,k [mm] \in \IN_0 [/mm] k [mm] \le [/mm] n

Der Induktionsanfang erscheint ja relativ simpel. Für n=0 (leere Menge) ist lediglich die leere Menge Teilmenge, [mm] \vektor{0 \\ 0} [/mm] =1
Wie ich nun den Induktionsschritt beginnen könnte, ist mir nicht wirklich klar.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Binomialkoeffizent - Teilmenge: Antwort
Status: (Antwort) fertig Status 
Datum: 21:48 So 26.11.2006
Autor: moudi

Hallo stepho

Sei $x$ ein Fix gewähltes Element der n-elementigen Menge X.
Dann kannst du die k-elementigen Teilmengen von X auf teilen in diejenigen Teilmengen, die x enthalten, dass sind aber gleich der Anzahle (k-1)-elementige Teilmengen von [mm] $X\smallsetminus\{x\}$ [/mm] und in diejenigen Teilmengen, die x nicht enthalten, das ist gleich der Anzahle k-elementigen Teilmengen von [mm] $X\smallsetminus\{x\}$. [/mm]

Bemerkung: Die Induktions"variable" ist die Summe m=n+k. Du darfst die Behauptung für m-1 annehmen.

mfG Moudi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]