matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und GrenzwerteBinomialkoeffizient
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Grenzwerte" - Binomialkoeffizient
Binomialkoeffizient < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Binomialkoeffizient: Auflösung einer Summe
Status: (Frage) beantwortet Status 
Datum: 08:45 Di 19.01.2016
Autor: SusanneK

Aufgabe
[mm]\summe_{k=0}^{n} {2n+2 \choose 2k+1}[/mm]

Hallo,
es ist [mm]\summe_{k=0}^{n} {n \choose k}=2^n[/mm]

Kann ich dann die o.g. Formel so auflösen:
[mm]\summe_{k=0}^{n} {2n+2 \choose 2k+1}=2^{2n+2}[/mm]
?

Und wenn nicht, wie dann ?

Danke im Voraus !

        
Bezug
Binomialkoeffizient: Antwort
Status: (Antwort) fertig Status 
Datum: 09:05 Di 19.01.2016
Autor: Thomas_Aut

Hallo,

> [mm]\summe_{k=0}^{n} {2n+2 \choose 2k+1}[/mm]
>  Hallo,
>  es ist [mm]\summe_{k=0}^{n} {n \choose k}=2^n[/mm]
>
> Kann ich dann die o.g. Formel so auflösen:
>  [mm]\summe_{k=0}^{n} {2n+2 \choose 2k+1}=2^{2n+2}[/mm]
>  ?

Nein.

>  
> Und wenn nicht, wie dann ?
>  

Rechne für niedriges n einmal konkret, dann siehst du, was rauskommen soll.

> Danke im Voraus !  

Lg Thomas


Bezug
                
Bezug
Binomialkoeffizient: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:08 Di 19.01.2016
Autor: SusanneK

Hallo Thomas,
vielen Dank für deine Antwort !

Also wenn ich nachrechne mit n=5, dann erhalte ich
[mm]{12 \choose 1}+{12 \choose 2}+..+{12 \choose 11}= 12+\frac{10*11*12}{1*2*3}+\frac{8*9*10*11*12}{1*2*3*4*5}+\frac{6*7*..*12}{1*2*..*7}+\frac{4*5*..*11*12}{1*2*3*..*9}+12[/mm]
[mm]=12+2*10*11+8*9*11+8*9*11+5*11*12[/mm]
[mm]=2(2n+2)+ ???[/mm]
Weiter komme ich leider nicht.
Geht das noch schöner mit einer Formel ?

Danke, Susanne

Bezug
                        
Bezug
Binomialkoeffizient: Antwort
Status: (Antwort) fertig Status 
Datum: 11:08 Di 19.01.2016
Autor: Thomas_Aut

Hallo,

so meinte ich das auch wieder nicht :)

Es gilt

$ [mm] \summe_{k=0}^{n} [/mm] {2n+2 [mm] \choose 2k+1}=2^{2n+1} [/mm] $

Diese Idee solltest du bekommen, wenn du dir die Angelegenheit für niedrige n ansiehst.

Nun verifiziere es allgemein.

Lg

Bezug
                                
Bezug
Binomialkoeffizient: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:03 Di 19.01.2016
Autor: SusanneK

Hallo Thomas,
nochmals danke !!

Phhh...also verifizieren ginge mit Induktion.
Aber wahrscheinlich kann man viel einfacher aus [mm]\summe_{k=0}^{n}{n \choose k}=2^n[/mm] die Formel ableiten, da zum oberen Wert noch 2 und zum unteren Wert nur 1 addiert wird - oder ?

LG, Susanne



Bezug
                                        
Bezug
Binomialkoeffizient: Antwort
Status: (Antwort) fertig Status 
Datum: 12:25 Di 19.01.2016
Autor: M.Rex

Hallo Susanne

> Hallo Thomas,
> nochmals danke !!

>

> Phhh...also verifizieren ginge mit Induktion.


Yep, genau das ist der Weg.

> Aber wahrscheinlich kann man viel einfacher aus
> [mm]\summe_{k=0}^{n}{n \choose k}=2^n[/mm] die Formel ableiten, da
> zum oberen Wert noch 2 und zum unteren Wert nur 1 addiert
> wird - oder ?

Nein, die Formel nützt nicht viel, da du die Binomialkoeffizienten zu stark veränderst.

>

> LG, Susanne

>

Marius

Bezug
                                                
Bezug
Binomialkoeffizient: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:34 Di 19.01.2016
Autor: SusanneK

Hallo Marius,
ich danke dir !
LG, Susanne

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]