matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-InduktionBinomialkoeffizient
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis-Induktion" - Binomialkoeffizient
Binomialkoeffizient < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Binomialkoeffizient: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:08 Do 23.10.2008
Autor: Shelli

Aufgabe
Zeige (n über k) Element N. Ist A eine n-elementige Menge, so ist (n über k) die Anzahl der k-elementigen Teilmengen.

Hallo!

Wie beweise ich, dass [mm] \vektor{n \\ k} [/mm] Element von N ist??

Kann ich außerdem die Aufgabe beweisen, in dem ich [mm] \summe_{i=1}^{n} \vektor{n \\ k} [/mm] = [mm] 2^n [/mm] setze, da [mm] 2^n [/mm] die Anzahl der Teilmengen ist? Kann ich das so machen und dann mit vollständiger Induktion beweisen?

Wäre echt dankbar über ein paar Tipps. Weiß leider überhaupt nicht wie ich an Beweise rangehen soll.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Binomialkoeffizient: Antwort
Status: (Antwort) fertig Status 
Datum: 14:44 Fr 24.10.2008
Autor: koepper

Hallo,

Daß ${n [mm] \choose [/mm] k}$ die Anzahl der k-elementigen Teilmengen einer n-elementigen Menge ist, zeigst du über vollständige Induktion:

Zeige zuerst, daß ${n [mm] \choose [/mm] 1} = n$ die Anzahl der 1-elementigen Teilmengen ist (trivial).
Konstruiere dann die Anzahl der k+1-elementigen Teilmengen aus der Anzahl der k-elementigen, indem du zu jeder k-elementigen Teilmenge ein weiteres Element hinzunimmst. Dabei ergeben sich aber alle k+1-elementigen TM mehrfach (wie oft?)

${n [mm] \choose [/mm] k} [mm] \in \IN$ [/mm] für $n, k [mm] \in \IN$ [/mm] folgt dann daraus.

LG
Will

Bezug
                
Bezug
Binomialkoeffizient: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:02 Fr 24.10.2008
Autor: Shelli

Vielen Dank!
Habs jetzt doch hingekriegt, aber gut zu wissen, dass du denselben Lösungsweg hast... :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]