matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitsrechnungBinomialmodell
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Wahrscheinlichkeitsrechnung" - Binomialmodell
Binomialmodell < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Binomialmodell: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 16:10 Fr 09.12.2016
Autor: astol

Aufgabe
In einem Text von 37 Seiten sind insgesamt 50 Druckfehler enthalten; diese sind zufällig über den ganzen Text verteilt. Ermitteln Sie mit welcher Wahrscheinlichkeit auf einer bestimmten Seite, kein, ein zwei, drei oder mehr als drei Druckfehler vorhanden sind.

Hallo zusammen, im Prinzip hab ich die Aufgabe verstanden, ich hänge nur bei der konkreten Angabe von n, p und k und es wäre nett wenn Ihr mir da helfen könntet.

Da ich mir ja eine bestimmte Seite angucken, kann ich mir das so vorstellen, dass diese Bestimmte Seite sich die Druckfehler (aus einer Urne) zieht, oder?
Die Wahrscheinlichkeit p ist dann die Wahrscheinlichkeit, dass diese bestimmte Seite einen Druckfehler abbekommt, richtig?

Weil sich die Wahrscheinlichkeit bei jedem Zug nicht ändert und wir nur zwei mögliche Ausgänge  haben. Seite zieht Fehler oder zieht keinen Fehler liegt eine Binomialverteilung vor, die ich dann mit
[mm] P(X=k)=\vektor{n \\ k}*p^k*(1-p)^{n-k} [/mm]
berechnen kann.

Aber zurück zu meiner Frage: Wie sehen n und p hier konkret aus?
Könnt ihr mir da helfen? DANKE Für Eure Hilfe und ein schönes Wochenende
Grüße

Na und jetzt sollte die Frage nach den Wahrscheinlichkeiten, dass Seite 7 des Textes, 0, 1, 2, 3, mehr als 3 Druckfehler abbekommt doch einfach zu beantworten sein ... Big Laugh


        
Bezug
Binomialmodell: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Fr 09.12.2016
Autor: Martinius

Hallo astol,

vielleicht hilft Dir eine Seite von diesen:

[]https://www.google.de/?gws_rd=ssl#q=Elemente+Kugel+F%C3%A4cher+Modell


LG, Martinius

Bezug
        
Bezug
Binomialmodell: Antwort
Status: (Antwort) fertig Status 
Datum: 18:26 Fr 09.12.2016
Autor: hippias


> In einem Text von 37 Seiten sind insgesamt 50 Druckfehler
> enthalten; diese sind zufällig über den ganzen Text
> verteilt. Ermitteln Sie mit welcher Wahrscheinlichkeit auf
> einer bestimmten Seite, kein, ein zwei, drei oder mehr als
> drei Druckfehler vorhanden sind.
>  Hallo zusammen, im Prinzip hab ich die Aufgabe verstanden,
> ich hänge nur bei der konkreten Angabe von n, p und k und
> es wäre nett wenn Ihr mir da helfen könntet.
>  
> Da ich mir ja eine bestimmte Seite angucken, kann ich mir
> das so vorstellen, dass diese Bestimmte Seite sich die
> Druckfehler (aus einer Urne) zieht, oder?

Das ist ein legitimer Ansatz, aber bedenke, dass bei diesem Modell Ziehen ohne Zurückliegen vorliegen würde, sodass keine Binomialmodell anwendbar wäre.

>  Die Wahrscheinlichkeit p ist dann die Wahrscheinlichkeit,
> dass diese bestimmte Seite einen Druckfehler abbekommt,
> richtig?
>  
> Weil sich die Wahrscheinlichkeit bei jedem Zug nicht
> ändert

Doch, s.o.

> und wir nur zwei mögliche Ausgänge  haben. Seite
> zieht Fehler oder zieht keinen Fehler liegt eine
> Binomialverteilung vor, die ich dann mit
> [mm]P(X=k)=\vektor{n \\ k}*p^k*(1-p)^{n-k}[/mm]
>  berechnen kann.

Versuche nicht die Druckfehler aus der Urne zu ziehen, sondern die Seiten. Ein Treffer liegt vor, wenn die bestimmte Seite gezogen wurde.

>  
> Aber zurück zu meiner Frage: Wie sehen n und p hier
> konkret aus?
>  Könnt ihr mir da helfen? DANKE Für Eure Hilfe und ein
> schönes Wochenende
>  Grüße
>  
> Na und jetzt sollte die Frage nach den
> Wahrscheinlichkeiten, dass Seite 7 des Textes, 0, 1, 2, 3,
> mehr als 3 Druckfehler abbekommt doch einfach zu
> beantworten sein ... Big Laugh
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]