matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitsrechnungBinomialverteilung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Wahrscheinlichkeitsrechnung" - Binomialverteilung
Binomialverteilung < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Binomialverteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:40 Fr 28.04.2006
Autor: popati

Aufgabe
In einem Abschnitt eines Videospiels muss der Held zunächst 8 Wassergräben und danach 2 gefährliche Brücken überwinden. Wurde ein Hindernis unbeschadet überwunden, erhält der Spieler Punkte. Ansonsten läuft das Spiel weiter, der Spieler erhält keine Punkte.
Wir betrachten im folgenden einen Spieler mit konstanter Spielstärke. Die Wahrscheinlichkeit, einen Wassergraben unbeschadet zu überwinden, beträgt für diesen Spieler 0,4. Die Wahrscheinlichkeit, eine Brücke unbeschadet zu passieren, beträgt 0,6.

(1) Berechnen Sie für diesen Spielabschnitt die Wahrscheinlichkeit der nachfolgenden Ereignisse.
A:   Der Held überwindet alle Wassergräben unbeschadet.
B:   Der Held überwindet genau die ersten vier Wassergräben und genau die erste Brücke unbeschadet.
C:   Der Held überwindet genau vier Wassergräben und genau eine Brücke unbeschadet.

(2)  Wie viele Wassergräben in diesem Spielabschnitt werden im Schnitt bei 10 Spielen nicht unbeschadet überwunden?

(3)  Wie groß ist die Wahrscheinlichkeit, das der Held in diesem Spielabschnitt an höchstens einem Hindernis scheitert?

(4)  Wie groß ist die Wahrscheinlichkeit, dass bei 5 Spielen insgesamt höchstens ein Wassergraben nicht bewältigt wird?  

Hallöchen.

Ich hab im Moment eine Aufgabe, die mir ziemliches Kopfzerbrechen bereitet und ich würde mich sehr freuen, wenn mir jemand bei der Lösung dieser Aufgabe behilflich wäre. Im Grund finde, ich Binomialverteilung nicht allzu schwer. Doch hier weiß ich nicht mehr weiter.

U = Unbeschadet, B = beschadet  

8 Wassergräben   U = 0,4      B = 0,6
2 Wassergräben   U = 0,6      B = 0,4

(1)

A:   --> ich bin davon ausgegangen, dass wenn er die wassergräben unbeschadet übersteht, die Brücke nicht übersteht.

[mm] \pmat{8 \\ 8} [/mm] x [mm] 0,4^4 [/mm] x [mm] 0,6^0 [/mm]  +  [mm] \pmat{2 \\ 2} [/mm] x [mm] 0,4^2 [/mm] x [mm] 0.6^0 [/mm] = 0,1607

oder

[mm] 0,4^8 [/mm] x [mm] 0,4^2 [/mm] = 0,0001

welches ergebnis ist richtig? kann man einzelne binomialverteilungen addieren?

B:  festgesetzte "plätze" --> keine binomialverteilung

[mm] 0,4^4 [/mm] x [mm] 0,6^4 [/mm] x 0,6 x 0,4 = 0,0008

C:  n= 8     k= 4    p = 0,4           n = 2     k = 1      p = 0,6                

[mm] \pmat{8 \\ 4} [/mm] x [mm] 0,4^4 [/mm] x [mm] 0,6^4 [/mm]  +  [mm] \pmat{2 \\ 1} [/mm] x 0,6 x 0,4 = 0,7122

(2)

wenn ich 10 spiele habe und in jedem spiel 8 wassergräben, wie komme ich dann auf die anzahl der nicht unbeschadet überwunden wassergräben? ich hab da absolut keine idee.

(3)

P1 (x  [mm] \ge [/mm] 1) = 0,0085        n = 8   p = 0,6   k1 = 0   k2 = 1
P2 (x  [mm] \ge [/mm] 1) = 0,84            n = 2   p = 0,4   k1 = 0   k2 = 1
--> laut eines taschenrechnerprogramms

0,0085 + 0,84  =  0,8485

(4)
muss ich das ergebnis aus der aufgabe (3) dann mal 5 nehmen, weil es 5 spiele sind?

Selbst meine Lösungen finde ich ziemlich unglaubwürdig, zumindestens kann ich sie mir nicht richtig vorstellen.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Binomialverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:20 Fr 28.04.2006
Autor: Zwerglein

Hi, popati,


> (1)
>
> A:   --> ich bin davon ausgegangen, dass wenn er die
> wassergräben unbeschadet übersteht, die Brücke nicht
> übersteht.

Da von den Brücken bei a) nicht die Rede ist, werden die gar nicht berücksichtigt, will heißen: Ob er die Brücken schafft oder nicht, ist bei a) wurscht!

>  
> [mm]\pmat{8 \\ 8}[/mm] x [mm]0,4^4[/mm] x [mm]0,6^0[/mm]  +  [mm]\pmat{2 \\ 2}[/mm] x [mm]0,4^2[/mm] x [mm]0.6^0[/mm] = 0,1607
>  
> oder
>
> [mm]0,4^8[/mm] x [mm]0,4^2[/mm] = 0,0001
>
> welches ergebnis ist richtig? kann man einzelne
> binomialverteilungen addieren?

Dein erster Vorschlag ist falsch, Addition hier auf keinen Fall angebracht!
Der zweite Vorschlag ist teilweise OK, aber siehe meine Bemerkung von oben!
Richtig ist daher:
P("alle 8 Gräben werden überwunden") = [mm] 0,4^{8} [/mm] = 0,000655.

>
> B:  festgesetzte "plätze" --> keine binomialverteilung
>
> [mm]0,4^4[/mm] x [mm]0,6^4[/mm] x 0,6 x 0,4 = 0,0008

Das stimmt!


> C:  n= 8     k= 4    p = 0,4           n = 2     k = 1      
> p = 0,6                
>
> [mm]\pmat{8 \\ 4}[/mm] x [mm]0,4^4[/mm] x [mm]0,6^4[/mm]  +  [mm]\pmat{2 \\ 1}[/mm] x 0,6 x 0,4
> = 0,7122

Keine Addition der Wahrscheinlichkeiten, sondern MULTIPLIKATION!
Denk' Dir das Ganze in einem Baum angeordnet (den Du natürlich wegen seiner Größe nicht zeichnen kannst!): Pfadregel!

Also: [mm] \pmat{8 \\ 4} [/mm] x [mm] 0,4^4 [/mm] x [mm] 0,6^4 \red{\times} \pmat{2 \\ 1} [/mm] x 0,6 x 0,4
  

> (2)
>
> wenn ich 10 spiele habe und in jedem spiel 8 wassergräben,
> wie komme ich dann auf die anzahl der nicht unbeschadet
> überwunden wassergräben? ich hab da absolut keine idee.

Wieviele Wassergräben werden im Schnitt bei 1 Spiel nicht unbeschadet überwunden? Erwartungswert: 0,6*8 = 4,8.

Wie viele demnach bei 10 Spielen? (Also bei insgesamt 80 Wassergräben!)

> (3)
>
> P1 (x  [mm]\ge[/mm] 1) = 0,0085        n = 8   p = 0,6   k1 = 0   k2
> = 1
> P2 (x  [mm]\ge[/mm] 1) = 0,84            n = 2   p = 0,4   k1 = 0  
> k2 = 1
> --> laut eines taschenrechnerprogramms
>  
> 0,0085 + 0,84  =  0,8485

Kommt Dir das nicht selbst ein bisschen viel vor?

Also: Dein Ereignis tritt ein, wenn der Held an
- genau 1 Wassergraben, aber keiner Brücke,
- keinem Wassergraben und genau 1 Brücke oder
- keinem Wassergraben und keiner Brücke scheitert.

Die jeweiligen Wahrscheinlichkeiten berechnest Du wie bei 1c) und zählst sie am Schluss zusammen!

>
> (4)
> muss ich das ergebnis aus der aufgabe (3) dann mal 5
> nehmen, weil es 5 spiele sind?
>

Die Frage 4) ist etwas zweideutig gestellt. Ich verstehe sie so, dass man von den 5*8 = 40 Wassergräben, die man bei 5 Spielen überwinden muss, höchstens einen nicht unbeschadet schafft.
Du hättest demnach eine Binomialverteilung
mit n=40, p=0,4 und k= sowie k=1.
(Also Summe zweier Wahrscheinlichkeiten: P(k=0) + P(k=1).

mfG!
Zwerglein

Bezug
                
Bezug
Binomialverteilung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:04 Sa 29.04.2006
Autor: popati

vielen, vielen Dank

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 9h 10m 11. Takota
DiffGlGew/Globaler Existenzsatz
Status vor 10h 31m 1. homerq
SVektoren/Raumwinkel errechnen
Status vor 14h 14m 6. leduart
DiffGlGew/Loesung DGL
Status vor 21h 32m 3. fred97
S8-10/Rationalisieren des Nenners
Status vor 1d 17h 30m 6. HJKweseleit
UNum/Skizzieren einer Menge
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]