matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitsrechnungBinomialverteilung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Wahrscheinlichkeitsrechnung" - Binomialverteilung
Binomialverteilung < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Binomialverteilung: Komplementärwahrscheinlichkeit
Status: (Frage) beantwortet Status 
Datum: 14:34 Di 26.02.2008
Autor: Tim221287

Aufgabe
90 Setzlinge einer seltenen Pflanze werden ausgebracht. Für jeden einzelnen ist
die Wahrscheinlichkeit, dass er anwächst, gleich 75%.

(a) Mit welcher Wahrscheinlichkeit wachsen wenigstens 62 Setzlinge an?
(b) Die Zufallsvariable X bezeichne die Anzahl der erfolgreich angewachsenen
Setzlinge. Bestimmen Sie den Erwartungswert von X.

In der Aufgabe sind gegeben n=90 ; k=62 ; p= 0.75

Ich hoffe so weit liege ich richtig. Nun habe ich das Problem das meine Tabelle für n=90 nur von p=0.21 bis p=0.30 geht.

Meine Frage für die Teilaufgabe a lautet also ob ich dann mit der komplementären Wahrscheinlichkeit (Also mit p=0.25) arbeiten darf oder ob ich k auch auf die komplementäre Wahrscheinlichkeit angleichen muss. also statt 62 dann 28

belasse ich k bei 62 müsste p ungefähr gleich 0 sein
setze ich k = 26 komme ich auf p=0.11331

also entweder 1 - 0
oder                 1 - 0.11331


oder bin ich mit meinem gedankengang völlig auf dem Holzpfad....?!
Wäre nett wenn mir jemand helfen könnte

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Binomialverteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:39 Di 26.02.2008
Autor: Tim221287

hatte ich leider noch vergessen zu fragen.

Die Lösung für b) ist doch

E(X) 0.75 * 90 = 67.5 oder irre ich mich da ?!

Bezug
                
Bezug
Binomialverteilung: alles richtig
Status: (Antwort) fertig Status 
Datum: 09:39 Mi 27.02.2008
Autor: informix

Hallo Tim221287,

> hatte ich leider noch vergessen zu fragen.
>  
> Die Lösung für b) ist doch
>
> E(X) = 0.75 * 90 = 67.5 oder irre ich mich da ?!  

alles [ok]


Gruß informix

Bezug
        
Bezug
Binomialverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:46 Di 26.02.2008
Autor: Adamantin


> 90 Setzlinge einer seltenen Pflanze werden ausgebracht. Für
> jeden einzelnen ist
>  die Wahrscheinlichkeit, dass er anwächst, gleich 75%.
>  
> (a) Mit welcher Wahrscheinlichkeit wachsen wenigstens 62
> Setzlinge an?
>  (b) Die Zufallsvariable X bezeichne die Anzahl der
> erfolgreich angewachsenen
>  Setzlinge. Bestimmen Sie den Erwartungswert von X.
>  In der Aufgabe sind gegeben n=90 ; k=62 ; p= 0.75
>  
> Ich hoffe so weit liege ich richtig. Nun habe ich das
> Problem das meine Tabelle für n=90 nur von p=0.21 bis
> p=0.30 geht.
>  
> Meine Frage für die Teilaufgabe a lautet also ob ich dann
> mit der komplementären Wahrscheinlichkeit (Also mit p=0.25)
> arbeiten darf oder ob ich k auch auf die komplementäre
> Wahrscheinlichkeit angleichen muss. also statt 62 dann 28
>  
> belasse ich k bei 62 müsste p ungefähr gleich 0 sein
>  setze ich k = 26 komme ich auf p=0.11331
>  
> also entweder 1 - 0
>  oder                 1 - 0.11331

Du willst am Anfang [mm] P(X\ge62) [/mm] berechnent mit p=0,75
Das bedeutet für die Tabelle, dass du hier den gewünschten Bereich durch 1-x erzielen musst:
[mm] P(X\ge62)=1-P(X\le61)=1-F(90;0,75;61) [/mm]

Dieser Ansatz hilft dir jedoch bei deinem Problem nicht weiter, also zurück zu meinem pff...
Damit du mit 0,25 rechnen kannst, musst du dir überlegen, was die Angabe über das Gegenereignis aussagt. Wenn 62 oder mehr Pflanzen wachsen sollen, dürfen also maximal 90-62=28 Pflanzen nicht wachsen!

[mm] P(X\le28) [/mm] mit p=0,25!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]