matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStochastikBinomialverteilung - Würfeln
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Stochastik" - Binomialverteilung - Würfeln
Binomialverteilung - Würfeln < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Binomialverteilung - Würfeln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:16 Sa 30.06.2012
Autor: Martinius

Aufgabe
Parameter bestimmen

Wie oft muss man würfeln, um mit einer Wahrscheinlichkeit von mindestens 90%

a) mindestens eine Sechs zu würfeln,

b) mindestens fünf Sechsen zu würfeln?


Hallo liebe Leute,

ich steh' gerade etwas auf dem Schlauch. Mir geht es um die Aufgabe b).


zu a)

$P(X [mm] \ge 1)\; [/mm] = [mm] \;\sum_{k=1}^{n}{n \choose k}* \left(\frac{1}{6} \right)^k* \left(\frac{5}{6} \right)^{n-k} \; \ge \;\; [/mm] 0,9$        Das n wäre zu bestimmen.

Das geht hier über die Gegen-Wahrscheinlichkeit:

$P(X [mm] \ge 1)\; [/mm] = [mm] \; [/mm] 1-P(X=0) [mm] \; [/mm] = [mm] \; [/mm] 1- [mm] \left(\frac{5}{6} \right)^n$ [/mm]

$ 1- [mm] \left(\frac{5}{6} \right)^n \ge [/mm] 0,9$

$n [mm] \; \ge \; \; \frac{ln(0,1)}{ln\left(\frac{5}{6}\right)}$ [/mm]

$n [mm] \; \ge \;12,63$ [/mm]

Man muss also mindestens 13 mal würfeln.




zu b)

[mm] $P(X\ge [/mm] 5) [mm] \; [/mm] = [mm] \; \sum_{k=5}^{n}{n \choose k}*\left(\frac{1}{6} \right)^k* \left(\frac{5}{6} \right)^{n-k} \; \ge \;\; [/mm] 0,9$

oder

$1-P(4 [mm] \ge [/mm] X [mm] \ge [/mm] 0) [mm] \; \ge \;\; [/mm] 0,9$

$0,1 [mm] \ge \; [/mm] P(4 [mm] \ge [/mm] X [mm] \ge [/mm] 0)$

$0,1 [mm] \; \ge \; \sum_{k=0}^{4}{n \choose k}*\left(\frac{1}{6} \right)^k* \left(\frac{5}{6} \right)^{n-k} [/mm] $

Das habe ich bisher gelöst mittels 1. einer Excel-Tabelle: n = 46.

Und 2. numerisch mit dem CAS des Voyage200 (Derive):

${n [mm] \choose 0}*\left(\frac{1}{6} \right)^0* \left(\frac{5}{6} \right)^{n}+{n \choose 1}*\left(\frac{1}{6} \right)^1* \left(\frac{5}{6} \right)^{n-1}+{n \choose 2}*\left(\frac{1}{6} \right)^2* \left(\frac{5}{6} \right)^{n-2}+{n \choose 3}*\left(\frac{1}{6} \right)^3* \left(\frac{5}{6} \right)^{n-3}+{n \choose 4}*\left(\frac{1}{6} \right)^4* \left(\frac{5}{6} \right)^{n-4}-0,1 \; [/mm] = [mm] \; [/mm] 0$

Ergebnis: $n [mm] \; \approx \; [/mm] 45,8965279495 ...$  ; also $n [mm] \; \ge \; [/mm] 46$.


Meine Frage: gibt es da keine geschickte Umformung wie in a), um das n zu errechnen?


Besten Dank für eine Antwort!

LG & gute Nacht,

Martinius

        
Bezug
Binomialverteilung - Würfeln: Antwort
Status: (Antwort) fertig Status 
Datum: 10:32 Sa 30.06.2012
Autor: Diophant

Hallo Martinius,

mindestens fünf Sechsen = höchstens zweimal keine Sechs

Damit könntest du das ganze bei b) auf eine Wahrscehinlichkeit der Form [mm] P(X\le{2}) [/mm] bringen. Wobei das eigentliche Problem bestehen bleibt: es führt auf eine Gleichung der Form

[mm] P(n)*q^n-c=0 [/mm] ; P(n): Polynom in n, [mm] q,c\in\IR^{+} [/mm]

Meiner Ansicht nach bekommt man das nicht analytisch aufgelöst.


Gruß, Diophant

Bezug
                
Bezug
Binomialverteilung - Würfeln: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:54 Sa 30.06.2012
Autor: Martinius

Hallo Diophant,

Dank Dir für Deine Antwort!

Dann bin ich ja beruhigt.


LG, Martinius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]