matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStatistik (Anwendungen)Binomialverteilung für Summe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Statistik (Anwendungen)" - Binomialverteilung für Summe
Binomialverteilung für Summe < Statistik (Anwend.) < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Binomialverteilung für Summe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:27 Sa 05.12.2009
Autor: Lupi99

Aufgabe
Zeige dass die Summe von N unabhängigen Bernoulli-verteilten Zufallsvariablen X [mm] \sim [/mm] B(1,p) binomialverteilt ist mit [mm] \summe_{i=1}^{N}X_i \sim [/mm] B(N,p).

Hi,

ich scheitere leider an dieser Aufgabe. Ich habe nicht mal einen guten Anatz :(, da ich mich schon Frage, wie eine Summe aus Zahlen, was ja wiederum nur eine Zahl ist, binomialverteilt sein kann. Es kommt ja ein konkreter, diskreter Wert raus...

Ich habe die Binimialverteilung bis jetzt so verstanden, dass ich mit X [mm] \sim [/mm] B(a, b) bei a angebe, wie oft ein Ereigniss eintritt und bei b die Wahrscheinlichkeit angebene. Also für die Aufgabe ist daher B(N,p) angegeben, weil das in der Summe bis N steht, also N Ereignisse eintreten.

Was ich damit dann aber berechne weiß ich leider nicht.


Danke schonmal für Tips, Hinweise und Hilfe.

Gruß,
Lupi



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Binomialverteilung für Summe: Antwort
Status: (Antwort) fertig Status 
Datum: 11:48 So 06.12.2009
Autor: luis52

Moin Lupi99,

[willkommenmr]

Da schau her.

vg Luis

Bezug
                
Bezug
Binomialverteilung für Summe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:45 So 06.12.2009
Autor: Lupi99

Vielen Dank. Das hat mir auf jeden Fall schonmal weitergeholfen, aber leider verstehe ich nicht alles daran. Das Problem ist auch, dass wir diese Faltungsformel nicht im Skript haben und ich auch nicht weiß, wie ich die herleiten kann.

Wir haben gegeben, was die Binomialverteilung ist:
[mm] P(X=k)=\vektor{n \\ k}*p^k*(1-p)*{n-k}) [/mm]
und was die Bernoulli Verteilung ist (tippe ich jetzt mal nicht ab).

Muss ich jetzt überhaupt rechnen:
[mm] P(\summe_{i=1}^{n}X_i=k)=\vektor{n \\ k}*p^k*(1-p)*{n-k}) [/mm]

Dann habe ich ja imho nur n*X und kann für k also immer n*X einsetzen. Was das mit er Faltungsformel zu tun hat, weiß ich leider nicht....

(OK, da tun sich sicherlich gerade Abgründe auf). Ich hab leider auch noch nicht verstanden, wie die Summe aus Zufallsvariablen verteilt sein kann. Das ist doch nur ein diskreter Wert, den man errechnet.

Bezug
                        
Bezug
Binomialverteilung für Summe: Antwort
Status: (Antwort) fertig Status 
Datum: 21:10 So 06.12.2009
Autor: luis52

Moin,

> Vielen Dank. Das hat mir auf jeden Fall schonmal
> weitergeholfen, aber leider verstehe ich nicht alles daran.
> Das Problem ist auch, dass wir diese Faltungsformel nicht
> im Skript haben und ich auch nicht weiß, wie ich die
> herleiten kann.
>  
> Wir haben gegeben, was die Binomialverteilung ist:
> [mm]P(X=k)=\vektor{n \\ k}*p^k*(1-p)*{n-k})[/mm]
> und was die Bernoulli Verteilung ist (tippe ich jetzt mal
> nicht ab).
>  
> Muss ich jetzt überhaupt rechnen:
>  [mm]P(\summe_{i=1}^{n}X_i=k)=\vektor{n \\ k}*p^k*(1-p)*{n-k})[/mm]

Anbei findest du die Wsken [mm] $P(X_1=x_1,X_2=x_2)=P(X_1=x_1)P(X_2=x_2)$. [/mm]

$ [mm] \begin{tabular} {@{}cccc@{}} \hline &\multicolumn{2}{c}{x_2}\\\cline{2-3} x_1& 0 & 1 & \sum\\\hline 0 & (1-p)^2 & p(1-p) & 1-p \\ 1 & p(1-p) & p^2 & p \\\hline \sum &1-p & p & 1 \\ \hline \end{tabular} [/mm] $

Daraus kannst du ableiten [mm] $P(X_1+X_2=0)=P(X_1=0,X_2=0)=(1-p)^2=\binom{2}{0}p^0(1-p)^2$, $P(X_1+X_2=1)=P(X_1=0,X_2=1)+P(X_1=1,X_2=0)=2p(1-p)^2=\binom{2}{1}p^1(1-p)^1$, $P(X_1+X_2=2)=P(X_1=1,X_2=1)=p^2=\binom{2}{2}p^0(1-p)^2$. [/mm]

Wiederhole diese Vorgehensweise fuer [mm] $n=3,4,\dots$ [/mm] (Vollst. Induktion!)  

>
> Dann habe ich ja imho nur n*X und kann für k also immer
> n*X einsetzen. Was das mit er Faltungsformel zu tun hat,
> weiß ich leider nicht....


Du irrst. Stell dir vor, du wirfst zwei Wuerfel. Jedem Wurf ordnest du
die Augensumme zu. Dann nimmt die Summe der Werte [mm] 2,3,\dots,11,12 [/mm] an und
nicht, analog zu zu deiner Argumentation [mm] $2\cdot1,2\cdot2,\dots,2\cdot6. [/mm]



vg Luis


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]