matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitsrechnungBinomialverteilung/koeffizient
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Wahrscheinlichkeitsrechnung" - Binomialverteilung/koeffizient
Binomialverteilung/koeffizient < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Binomialverteilung/koeffizient: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 00:12 Mo 14.11.2011
Autor: PolBT

Aufgabe
Die Klasse 8c hat für das Schulfest ein Minilotto gebaut. Dazu sind in einer Urne 5 Kugeln mit der Aufschrift 1, 2, 3, 4 und 5. Auf Spielscheinen muss man 3 Zahlen ankreuzen. Bei der anschließenden Ziehung werden 3 Kugeln gleichzeitig gezogen.
a) Gib den Ergebnisraum für dieses Minilotto an. Warum ist die Anzahl der möglichen Ergebnisse in diesem Fall kleiner als bei der Aufgabe 1b? Welche Ergebnisse von 1b fallen jeweils zu einem Ergebnis zusammen?

X ist die Anzahl der Richtigen.
b) Berechne die Wahrscheinlichkeit für einen Hauptgewinn, also einen "Dreier", beim Mini-Lotto.
c) Die Ziehung lautet 2-3-5. Gib die zu X=3, X=2, X=1 und X=0 gehörenden Ereignisse an und erstelle eine Tabelle der Wahrscheinlichkeitsverteilung von X!
d) Wie groß ist der Erwartungswert der Zufallsgröße X?

Hallo zusammen,

kurze Anmerkung zu der oben genannten Aufgabe 1b: Die lautet folgendermaßen: "Wie viele dreistellige Zahlen kann man aus den Ziffern 1, 2, 3, 4 und 5 bilden?"

Also zu a) hab ich den Ergebnisraum Omega über den Binomialkoeffizienten ausgerechnet, weil wir hier ja die Reihenfolge nicht beachten: [mm] \vektor{5 \\ 3} [/mm]
Als Lösung kam da 10 raus.
1b habe ich dagegen nur mit 5! ausgerechnet, was als Ergebnis logischerweise 120 hatte.

Nun zu meiner eigentlichen Frage: Bei der Aufgabe b) gibt es ja lediglich EINE einzige Möglichkeit. Ist die Wahrscheinlichkeit und die Antwort der Frage also [mm] \bruch{1}{10} [/mm] ? Das kann ich mir irgendwie nicht vorstellen, weils zu einfach zu berechnen war?

c) Hier hab ich wieder das selbe Problem: P(X=3) müsste ja wieder gleich [mm] \bruch{1}{10} [/mm] sein, nicht? Wie komme ich aber auf die anderen Wahrscheinlichkeiten?

Danke im Voraus für möglicherweise zielführende Antworten! :)
lg Paul

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Binomialverteilung/koeffizient: Antwort
Status: (Antwort) fertig Status 
Datum: 01:32 Mo 14.11.2011
Autor: Blech

Hi,

> weils zu einfach zu berechnen war?

nur weil Du über den Binkoeffi gegangen bist. Sonst gehen die Scherereien los, wie man die Reihenfolge raushaut.


> Wie komme ich aber auf die anderen Wahrscheinlichkeiten?

X=2:

Wieviele Möglichkeiten gibt's dafür?

1. Anzahl der Möglichkeiten 2 aus den 3 gezogenen Kugeln auszuwählen (die hast Du richtig)
2. Mal Anzahl der möglichen falschen Ergebnisse für die 3. Kugel (deine letzte Zahl ist falsch)

[mm] $\frac{{3\choose 2}{2\choose 1}}{{5\choose 3}}$ [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]